

THE FEDERAL COURTS LAW REVIEW

Volume 6, Issue 1 2012

COMPUTER SOFTWARE-RELATED LITIGATION:

DISCOVERY AND THE OVERLY-PROTECTIVE

ORDER

© Lydia Pallas Loren

+
 & Andy Johnson-Laird

 ++

ABSTRACT

Litigation involving allegations of intellectual property infringement

concerning computer software is some of the most complex, time

consuming, and expensive litigation in which private parties engage. Certain

practices in discovery, including, most significantly, the use of poorly

drafted discovery agreements that also include ―overly protective‖ orders,

increase that expense dramatically. Regardless of whether the allegation is

patent infringement, copyright infringement, or trade secret

misappropriation, prosecuting and defending the assertions in the case

require a probing analysis of the computer source code. In these types of

cases, both parties will engage forensic software analysts to assist the

lawyers in preparation for trial and to provide expert witness testimony for

the court. The forensic software analysts will dissect the computer source

code, often examining the source code of both parties, looking for signs of

infringement or misappropriation as well as for technical explanations of

similarities in the way the code is written or structured. But first, the

computer source code must be disclosed to the opposing party. Such

disclosure is almost always done pursuant to a protective order, typically

stipulated to by the attorneys. Lawyers often agree to protective orders that

significantly and unnecessarily increase the costs of discovery.

Attorneys should pay careful attention to the provisions addressing

the requirements of production and analysis. Additionally, attorneys must

understand the consequences of the clauses contained in protective orders in

+
 Professor Lydia Pallas Loren is the Kay Kitagawa and Andy Johnson-Laird Intellectual Property

Faculty Scholar at Lewis & Clark School of Law in Portland, Oregon.
++

 Andy Johnson-Laird has 38 years of experience in the computer software industry, the last 24 of

which have been as a forensic software analyst. He is the President of Johnson-Laird Inc. in

Portland, Oregon. He recently served as Special Master to the Hon. M. J. Garbis, District of

Maryland, to resolve several of the discovery issues described in this paper.

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

these types of litigation. As described in this article, it is possible to provide

robust protection for disclosed source code while at the same time not

unnecessarily and dramatically increasing the cost of discovery by

weaponizing the protective order.

The goals of this article are three-fold. First, we seek to help lawyers

understand the process of forensic software analysis. Second, we provide a

set of model clauses aimed at avoiding pitfalls in the design of the discovery

process, including model clauses for a protective order of appropriate scope

and with appropriate protections from further disclosure of the source code

that is produced. Third, for judges who are asked to intervene in discovery

battles, including fights over the proper scope of a protective order, this

article is meant to assist in evaluating the parties’ arguments.

TABLE OF CONTENTS

I. INTRODUCTION ... 5

II. GOALS AND METHODS OF FORENSIC SOFTWARE ANALYSIS 7

A. Goals of Forensic Software Analysis 7

1. Copyright Infringement .. 7

2. Patent Infringement .. 9

3. Trade Secret Misappropriation 10

B. Methods of Forensic Software Analysis 10

1. Assessing the Completeness of Source Code Production

 .. 11

2. Forensic Analysis Tools ... 12

a. Tools Specific for Copyright Infringement 12

b. Tools Specific for Patent Infringement 13

c. Tools Specific for Trade Secret Misappropriation 14

III. APPROPRIATE DISCOVERY AND PRODUCTION OF SOURCE CODE FOR

FORENSIC ANALYSIS ... 14

A. The Least Cost Production and Analysis of Source Code,

Documentation, and Other Computer-Based Evidence 15

1. Source Code Production ... 15

2. Other Files Types Required .. 16

 Computer Software-Related Litigation

a. Header Files ... 16

b. Makefiles ... 16

c. Revision Control Systems ... 17

d. Required Documentation ………………………….....17

B. Fundamental Problems in the Production of Source Code

During Discovery .. 18

1. Obtaining All Relevant Source Code Files in Appropriate

Digital Format... 18

2. Obtaining Necessary and Relevant Information Beyond

the Source Code Files ... 19

3. Shifting the Cost of Discovery for Incomplete Production

 .. 20

C. Important and Appropriate Security measures 21

1. Security in Transit .. 21

2. Packaging for Shipment .. 22

3. Security for Printed Source Code in Transit 23

4. Forensic Analysis: Stand-Alone Computer Isolated from

the Internet .. 23

D. Model Clauses for Ensuring Appropriate and Complete

Production ... 23

IV. APPROPRIATE PROTECTIVE AND OVERLY-PROTECTIVE ORDERS 25

A. Overview of Protective Orders in Federal Court Litigation .. 26

B. Model Clauses of an Appropriately Protective Order 27

C. Overly Protective Orders... 32

1. Stand-Alone Computer Not At Forensic Software

Analyst’s Office: Overly Protective Clauses 33

a. Stand-Alone Computers: Location 33

b. Stand-Alone Computer(s): Hours of Access 35

c. Stand-Alone Computer(s): Proscribed Items in Room

Containing Stand-Alone Computer 37

d. Stand-Alone Computer(s): Hardware Configuration .. 38

e. Controlling Printing and Copying of Source Code 40

f. Printing Source Code on Pre-Bates Numbered Paper

 ... 43

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

g. Forensic Software Analyst May Not Study Printed

Source Code .. 44

h. Forensic Software Analyst May Only Take Handwritten

Notes.. 45

i. Source Code Access Logs ... 48

j. Proctors.. 48

k. Forensic Tools ... 50

l. Prohibition on Compiling the Source Code................. 53

2. Stand-Alone Computers Not at the Analyst’s Location:

Key Issues Usually Omitted from the Protective Order

 .. 54

a. Administrative or User Accounts 55

b. Operating System .. 55

c. Proprietary Third Party Software 55

d. Technical Support ... 57

e. Physical Environment for Stand-Alone Computer 58

3. Stand-Alone Computers Located At Forensic Software

Analyst’s Office .. 59

a. Network and Internet Connections 59

b. Stand-Alone Computer Located at Expert’s Facilities:

Prohibitions on Printing... 60

4. Transmission of Source Code and Expert Work Product ...

 .. 61

V. CONCLUSION .. 63

 Computer Software-Related Litigation

I. INTRODUCTION

Litigation involving allegations of intellectual property infringement

concerning computer software is some of the most complex, time

consuming, and expensive litigation in which private parties engage.
1

Certain practices in discovery, including, most significantly, the use of

poorly drafted discovery agreements that also include ―overly-protective‖

orders, increase that expense dramatically. Regardless of whether the

allegation is patent infringement, copyright infringement, or trade secret

misappropriation, prosecuting and defending the assertions in the case

require a probing analysis of the computer source code.
2
 In these types of

cases, both parties will engage forensic software analysts to assist the

lawyers in preparation for trial and to provide expert witness testimony for

the court. The forensic software analysts will dissect the computer source

code, often examining the source code of both parties, looking for signs of

infringement or misappropriation, as well as for technical explanations for

similarities in the way the code is written or structured. But first, the

computer source code must be disclosed to the opposing party. Such

disclosure during discovery is almost always done pursuant to a protective

order, typically stipulated to by the attorneys. Unfortunately the lawyers

often agree
3
 to these protective orders prior to the engagement of their

1
 Intellectual Property cases have litigation costs that are almost 62% higher than other types of

cases. EMERY G. LEE III & THOMAS E. WILLGING, FED. JUDICIAL CTR., LITIGATION COSTS

IN CIVIL CASES: MULTIVARIATE ANALYSIS (2010). See AM. INTELLECTUAL PROP. LAW

ASS’N, REPORT OF THE ECONOMIC SURVEY 2011 (2011). In 2010, the median for the total cost

of patent infringement litigation was $5 million for cases in which more than $25 million was

perceived to be at stake and $2.5 million for cases in which $1 to $25 million was perceived to be

at stake. Id. at 36, apps. 1–154. These numbers include all types of patent infringement litigation.

The high discovery expenses in patent cases have been reported previously. THOMAS E.

WILLGING ET AL., FED. JUDICIAL CTR., DISCOVERY AND DISCLOSURE PRACTICE,

PROBLEMS, AND PROPOSALS FOR CHANGE: A CASE BASED NATIONAL SURVEY OF COUNSEL

IN CLOSED FEDERAL CIVIL CASES 38–39 (1997). For comparison purposes, a recent survey of

more than two thousand attorneys of record in federal civil cases terminated in the last quarter of

2008 found that the median cost of litigation was $15,000 for plaintiffs and $20,000 for

defendants. Emery G. Lee III & Thomas E. Willging, Defining the Problem of Cost in Federal

Civil Litigation, 60 DUKE L.J. 765, 769–70 (2010).
2
 Computer source code is the human-readable textual form of computer software.

3
 The rule governing protective orders encourages such agreement by requiring any party that seeks

a protective order from the court to certify that they have ―in good faith conferred or attempted to

confer with other affected parties in an effort to resolve the dispute without court action.‖ FED. R.

CIV. P. 26(c). Additionally, because often these cases require both parties to disclose source code,

it is in both parties’ interests to stipulate to terms for disclosure that are beneficial. This dynamic,

however, does not explain why so many protective orders are overly-protective.

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

experts, leading to protective orders that significantly and unnecessarily

increase the costs of discovery.
4

Protective orders in litigation requiring analysis of computer source

code typically serve two primary purposes. First, these orders often contain

an agreement concerning the types of files that will be disclosed, as well as

the manner of their disclosure. Second, these protective orders contain

many provisions that, in theory, have been designed to reduce the risk of

disclosure of valuable source code. Typically the parties are extremely

concerned with protecting their source code from disclosure as leaked

source code can have devastating effects on a company. Protective orders

used today, however, are infected with a kind of ―paper thinking‖ that does

not match the technical reality in which the forensic computer expert works.

These overly protective orders contain clauses that, in a paper world, may

have made some sense in achieving the underlying goal of reducing the risk

of disclosure. In the paperless reality of today, however, these clauses serve

no purpose except to increase the cost of litigation, a purpose that the

Federal Rules of Civil Procedure expressly prohibit.
5

We
6
 hypothesize that the overly protective order is the product of

either practitioners who (innocently) do not understand forensic software

analysis and therefore do not appreciate what they have wrought, or

practitioners who (less innocently) understand full well the nature of

computer software and have devised restrictions specifically intended to be

maximally inconvenient, impractical, and expensive to the opposing party.

Purposefully engaging in conduct merely to increase the cost and

inconvenience of discovery is expressly prohibited by the Federal Rules of

Civil Procedure
7
 and should not be tolerated. The lawyers involved in these

cases should not be permitted to turn the discovery process itself into a

tactical weapon.
8

4
 The difficulty of gathering data concerning the costs of discovery in federal court litigation has

been noted before. See LEE & WILLGING, supra note 1, at 770. See also Judith A. McKenna &

Elizabeth C. Wiggins, Empirical Research on Civil Discovery, 39 B.C. L. REV. 785, 796–97

(1998) (discussing the methodological difficulties in studying discovery).
5
 Rule 26 requires that attorneys certify that ―to the best of the person’s knowledge, information,

and belief formed after a reasonable inquiry‖ any discovery ―request, response, or objection‖ is

―not interposed for any improper purpose, such as to harass, cause unnecessary delay, or needlessly

increase the cost of litigation‖ FED. R. CIV. P. 26(g)(1)(B)(ii).
6
 As a linguistic convenience, when we write ―we‖ or ―our‖ we mean either one or both of the

authors.
7
 See supra note 5.

8
 See United States Court of Appeals for the Federal Circuit, An E-Discovery Model Order 2

(2011), available at

 Computer Software-Related Litigation

The goals of this article are three-fold. First, we seek to help lawyers

understand the process of forensic software analysis. Second, we provide

the tools for avoiding pitfalls in the design of the discovery process,

including drafting a protective order of appropriate scope and with

appropriate protections from further disclosure of the source code that is

produced. Third, for judges who are asked to intervene in discovery battles,

including fights over the proper scope of a protective order, this article is

meant to assist in evaluating the parties’ arguments.

II. GOALS AND METHODS OF FORENSIC SOFTWARE ANALYSIS

Cases alleging copyright infringement, patent infringement, or trade

secret misappropriation concerning computer software require forensic

software analysis. Before one can understand the constraints imposed by

poorly drafted or ill-considered discovery stipulations, including protective

orders, one must have a fundamental understanding of the nature and goals

of forensic software analysis for each of these causes of action. Because the

goals differ based on the cause of action asserted, we address each type of

cause of action separately.

A. Goals of Forensic Software Analysis

1. Copyright Infringement

In the computer software context, copyright infringement demands

the analysis and comparison of two bodies of source code: one from

Plaintiff and one from Defendant.
9
 The goal of this analysis is to determine

whether there are any elements of protectable source code that are identical

or substantially similar, a key requirement for any finding of infringement.
10

http://www.cafc.uscourts.gov/images/stories/announcements/Ediscovery_Model_Order.pdf (last

visited Dec. 7, 2011).
9
 There may be multiple versions of each party’s software products, but nevertheless the forensic

analysis process is one of comparison.
10

 Copyright protection affords the copyright owner, inter alia, the exclusive right ―to reproduce

the copyrighted work in copies. . . .‖ 17 U.S.C. § 106(1). Courts routinely interpret the word

―copies‖ to encompass substantially similar copies in addition to identical copies. See, e.g.,

Computer Assoc. Int’l, Inc. v. Altai, Inc., 982 F.2d 693 (2d Cir. 1992). Additionally, the copyright

owner is granted the exclusive right over the preparation of ―derivative works.‖ 17 U.S.C. §

106(2). Whether another person’s work is a derivative work also can involve the question of

substantial similarity. Castle Rock Entm’t, Inc. v. Carol Publ’g Group, Inc., 150 F.3d 132 (2d Cir.

1998). The justifications for the protection more expansive than just literal copying range from not

allowing the plagiarist to escape liability, to providing robust incentives for creation. See, e.g.,

Nichols v. Universal Pictures Co., 45 F.2d 119, 121 (2d Cir. 1930) (L. Hand, J.) (explaining ―[i]t is

of course essential to any protection of literary property . . . that the right cannot be limited literally

to the text, else a plagiarist would escape by immaterial variations.‖), cert denied 282 U.S. 902

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

Copyright considers the protectable elements to include not only the literal

lines of source code, but also the structure, sequence, and organization of

that code.
11

 Importantly, copyright law does not protect elements of a

computer program that are the product of external constraints.
12

 External

constraints include such things as the computer hardware, the host operating

system under which the program is operating,
13

 and the computer-generated

source code generated by using such products as Microsoft Visual Studio.
14

This is not an exhaustive list, but the forensic software analyst investigates

all instances of identicality or similarity discovered in the comparison of the

two bodies of source code, seeking to determine if there is any reason

related to unprotected elements that exonerates what might otherwise be

evidence of infringement.

The search for identical and substantially similar source code or

structure of the program (and the exoneration of constrained source code or

structure) requires the use of specialized computer software because the

(1931). When dealing with cases involving non-literal infringement, courts employ a test for

―substantial similarity.‖ Whether computer software should be treated identically to literary works

has generated much scholarly commentary. See, e.g., Pamela Samuelson et al., A Manifesto

Concerning the Legal Protection of Computer Programs, 94 COLUM. L. REV. 2308 (1994).

Courts have acknowledged the need for protection of computer software beyond the literal lines of

code in order to provide appropriate protection for the creators of such works and to prohibit

copyists from escaping liability through minor variations. However, because of both the technical

nature of computer software and the large quantity of public domain material the code is bound to

employ, some courts have insisted upon a showing of ―near identity‖ to find infringement of the

non-literal elements of computer software. See, e.g., Apple Computer, Inc. v. Microsoft Corp., 35

F.3d 1435, 1445-46 (9th Cir. 1994).
11

 This type of ―non-literal‖ protection stems, in part, from computer software’s classification as a

literary work. Literary works, such as novels, are protected against not only literal copying, but

also from paraphrasing and imitation of other expressive elements, such as plot and even specific

characters. See, e.g., Nichols, 45 F.2d at 121; Metro-Goldwyn-Mayer, Inc. v. Am. Honda Motor

Co., 900 F. Supp. 1287 (C.D. Cal. 1995) (noting sufficient authority for the proposition that a

plaintiff who holds copyrights in a film series acquires copyright protection as well for the

expression of any significant characters portrayed therein). For software, the parallel to the ―plot‖

of a literary work is the structure, sequence, and organization of the computer code. See Pamela

Samuelson, The Uneasy Case for Software Copyrights, 79 GEO. WASH. L. Rev. 1746, 1765-71

(2011). See also Altai, 982 F.2d 693; Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d

1222 (3d Cir. 1986).
12

 Altai, 982 F.2d 693.
13

 Id.
14

 Programs such as Microsoft Visual Studio contain source code templates for much of the routine

source code needed for a program to run under Microsoft Windows. Such machine generated

source code saves significant amounts of programming time but, as a consequence, produces

source code that will be similar and/or identical to all programs created using Microsoft Visual

Studio. See Introducing Visual Studio, MSDN http://msdn.microsoft.com/en-

us/library/fx6bk1f4(v=vs.80).aspx (last visited July 10, 2012).

 Computer Software-Related Litigation

programs at issue contain so much source code that it would otherwise defy

analysis within the time available.
15

2. Patent Infringement

In a case involving an allegation of patent infringement, the forensic

goal is one of reverse engineering specific parts of the alleged infringer’s

computer source code to determine whether, when that source code is

translated into an executing program, the asserted patent claims are

infringed by the program as it executes.
16

 This, of course, presumes a

detailed understanding of the functionality embraced by the claimed

invention and the specific claim limitations, and also requires a probing and

thorough analysis of the accused source code.

Forensic software analysis in the context of patent infringement

demands the ability to approach a vast (usually jumbled or curiously

organized) collection of computer software and to follow the programmatic

logic down its various pathways. During this descent, the forensic expert

must reverse engineer the source code and create an understanding of what

the different elements of the source code will do when they are translated

into object code
17

 and run on a computer.

Much of the source code that the expert has to analyze will have no

relevance to the claims of the patent asserted. Thus, the analysis consists of

repeatedly reverse engineering different aspects of the source code,

following the programmatic rabbit down the rabbit hole, only to then discard

the particular line of enquiry when it becomes clear that the functionality

that aspect provides is outside the scope of the asserted claims.

It is quite usual for a significant portion of the actual forensic

software analysis to be useless—only hindsight can determine which were

those parts of the source code relevant to the asserted claims of the patent,

particularly once the court has construed those claims.
18

15

 Modern programs can contain millions of textual lines of source code and it is not humanly

possible to analyze (let alone read) that much source code within the time constraints of discovery.
16

 If the case involves defense assertions of patent invalidity or inequitable conduct then the

forensic software analysis may devolve into reverse engineering other bodies of source code to

determine whether they anticipate the invention or demonstrate, for example the patentee’s

reduction to practice. For simplicity, this paper only considers infringement.
17

 Object code is the binary zeros and ones that can be loaded into a computer memory and consists

of the instructions that the computer executes. Object code controls the apparent behavior of the

computer program. Object code is essentially incomprehensible to human beings but can be

understood by certain highly trained computer programmers.
18

 Construing the claim language of a patent can be an extremely important part of any patent

litigation. Claim construction is a task that the Supreme Court has held is reserved to the judge as

a matter of law. Markman v. Westview Instruments, Inc., 517 U.S. 370, 372 (1996) (holding that

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

3. Trade Secret Misappropriation

While the law of trade secrets is significantly different from that of

patents,
19

 the forensic software analysis is very similar. The question at

hand in a case involving an assertion of trade secret misappropriation is

whether the alleged trade secrets are used within the source code. This can

only be determined (a) with a clear statement of what exactly are the alleged

trade secrets at a sufficient level of detail to recognize those secrets if they

are used in the source code, and (b) by an iterative reverse engineering of

the source code by the forensic software analyst to determine if those

alleged trade secrets are, indeed, used. This analysis is similar to that

performed in the context of cases involving allegations of patent

infringement; the alleged trade secrets correspond to the asserted claims of a

patent.

B. Methods of Forensic Software Analysis

Given the vast quantities of computer source code that make up a

modern program
20

 it is neither cost-effective nor feasible, given typical

litigation calendars, for a forensic software analyst to analyze the source

code without the assistance of computer software. While average citizens

think of computer software as one computer program, in actuality, the type

of computer software that is the subject of these complex infringement and

misappropriation litigations is far more complex, involving hundreds, if not

thousands of separate computer source code files that are interrelated in their

programming. The analyst must first assess whether all of the relevant and

necessary files of source code, in fact, have been produced in discovery.

Once a complete production has been verified the analyst can turn to the

task of examining the software for evidence of infringement/

misappropriation, and exoneration. The analyst will need to use a variety of

analytic tools, themselves computer software programs, to engage in the

necessary review of the source code. Only in rare cases will printed

versions of the code aid in the examination of the software.

―construction of a patent, including terms of art within its claim, is exclusively within the province

of the court.‖).
19

 Trade secret law can protect a computer process that would also qualify for patent protection.

Trade secret protection is available under most state jurisdictions for information that is ―not

generally known,‖ has value in its secrecy, and is subject to ―efforts that are reasonable under the

circumstances‖ to protect its secrecy. UNIF. TRADE SECRETS ACT § 20:2, 5 CALLMAN ON

UNFAIR COMP., TR., & MONO., § 1(4) (amended 1985).
20

 Modern programs typically contain hundreds of thousands of source code files and several

million text lines of computer source code for just a single version of a software product.

 Computer Software-Related Litigation

1. Assessing the Completeness of Source Code Production

Unless the relevant source code is a well-defined fragment of an

entire computer program, usually the first stage in any forensic analysis is to

determine whether all of the relevant source code has been produced. Given

the huge size of modern programs, the most technically viable way of

determining completeness is to compile
21

 the source code into a working

program. This task demands all of the source code and all of the ancillary

control files,
22

 as well as all of the third party components
23

 (be they source

or object code) that are necessary for the program to function.

The completeness of the production can only be assessed by

building a finished version of the program that can be tested and run. One

cannot produce an error-free version of the working version of the program

unless all the constituent parts are present. Compiling the program into a

working program may take several hours or a few days to complete; it is

unlikely that there exists any more cost-effective completeness test. And,

without performing this test first, the forensic software analyst cannot know

if he or she is working with the full computer software program that is the

object of the litigation and thus whether the production of the computer

software is complete. The producing party is the best equipped to make this

determination before handing over the production; however, without

specifying this as a required step for the producing party, it will fall on the

shoulders of the receiving party to attempt the process first and so doing

will, yet again, dramatically and, it could be argued, unfairly, increase the

time and cost burden. The receiving party essentially has to piece together a

jigsaw puzzle uninformed by what the final picture must look like.

Producing printouts on paper of the source code is wholly

inadequate. Such printouts cannot be verified for completeness because the

only effective means of verification is to compile the source code into object

code. Such compilation requires the code be in digital textual form.

Additionally, printouts of code cannot be searched cost-effectively, and

navigation through the source code—jumping from function to function as

required by the programming logic—cannot be done at a sensibly fast rate.

21

 ―Compiling‖ the source code transforms it into executable object code.
22

 In addition to the actual source code files, there are so-called ―makefiles‖ that are textual recipes

that control the process of taking source code and creating the finished executable program, along

with the requisite ―header‖ files that contain frequently used definitions that are included by

reference when required.
23

 It is quite normal for a computer program to include source code and object code that has been

licensed from third parties to provide specific specialized functionality. This is sometimes referred

to as ―bought in‖ or ―off-the-shelf‖ code.

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

2. Forensic Analysis Tools

Once assured of the completeness of the produced files, the forensic

analyst will typically turn to the task of examining the produced source code

on a computer screen.
24

 The analyst will employ specially designed

programs
25

 that allow high-speed navigation through the tangled logic path

of the source code. This logic path can flow into one source code file and

then another as each software function call
26

 is encountered.

Analytical computer programs are the most cost-effective means for

performing the necessary analysis by enabling high-speed navigation within

the source code. These tools also facilitate searching vast amounts of source

code by looking either for a particular function, data variable, or source code

file in the hundreds of thousands of files, and potentially millions of textual

lines of source code. Such initial analyses are more often hindered by

producing results that contain too much data of the wrong kind. Thus, it is

not unusual that the results of the initial analysis using third party software

tools will require the development of some ad hoc software tools (so-called

scripts) to refine the analysis and provide more relevant results. What those

scripts might need to do cannot be easily predicted, as the needs are

dependent upon the initial results. The analyst writes those scripts or mini-

programs on the fly depending on the task to be performed.

a. Tools Specific for Copyright Infringement

For copyright infringement actions, specialized computer software

makes it feasible to review and compare millions of lines of source code

produced in discovery by both parties and to find those places in the source

code where there are several adjacent lines of source code that are either

identical or substantially similar.
27

 Experience has shown that looking for

24

An analyst is likely to use two large screens so as to be able to compare different aspects of the

programs side-by-side. Looking at source code through one keyhole is bad enough. Two screens

at least increases the size of the keyhole!
25

 One such program is Understand, which is a very sophisticated tool for ingesting large amounts

of source code, analyzing it, creating logic flow paths through that source code, and then allowing

the static analysis of that code, navigating through the code as though it were being executed, or

searching for relevant parts of the source code. See UNDERSTAND: SOURCE CODE AND METRIC

ANALYSIS, http://www.scitools.com/ (last visited Oct. 22, 2011).
26

 A ―function call‖ is where one statement in the source code transfers control over to another part

of the source code to effect some specific ―function‖ (in the sense of purpose). For example: printf

(―Goodbye world‖) would transfer control to the printf (print formatted) function that transmits the

text ―Goodbye world‖ to a display device such as a screen or printer.
27

 See supra text accompanying note 10.

 Computer Software-Related Litigation

just single lines of code that are identical produces an excess of false

positives that merely serve to obfuscate the analysis.
28

Another source of false positives is the hundreds or thousands of

lines of code that may have been machine generated or dictated by the use

of third party software.
29

 These lines of code are either not eligible for

copyright protection because they are necessitated by external constraints

imposed on the software (such as needing to run under Microsoft Windows

or running on an iPad), or because the copyright in those lines of code are

owned by the third party, not by the plaintiff asserting infringement.

There are no standard computer programs that perform the filtering

of constrained code and juxtaposing instances where several lines of source

code are similar or identical. This process demands custom software created

by a forensic software analyst. These specialized software tools are created

to order and almost always require tailoring to the specific source code

produced by the parties in order to minimize false positives and false

negatives (those instances where similar code is just dissimilar enough not

to be detected).

b. Tools Specific for Patent Infringement

Patent infringement analyses rarely require the comparison of two

bodies of source code. Instead the relevant analysis in patent infringement

cases requires substantial examination of the source code from the accused

infringing device or program. In this analysis the goal is to create a road

map of the source code and then locate the relevant areas of functionality in

the program. Once identified, these areas of functionality can be studied by

the forensic software analyst to determine if they practice an element of the

patented invention.
30

 Such study can be aided greatly by being able to

quickly navigate around the source code following the programmatic logic

28

 While one line of code is not protectable under copyright law, exactly how many lines of code

must be reproduced to constitute infringement is unclear and will vary with the circumstances. See

Justin Hughes, Size Matters (Or Should) in Copyright Law, 74 FORDHAM L. REV. 575 (2005).

The Sixth Circuit has held that a program consisting of eight lines of code is just too short to be

copyrightable. Lexmark Int’l, Inc. v. Static Control Components, Inc., 387 F.3d 522, 542-43 (6th

Cir. 2004).
29

 For example, Microsoft Visual Studio generates large quantities of ―boilerplate‖ source code that

must be filtered from comparison as it will either appear identically in both bodies of source code

or will appear substantially similar. Some programs created by Visual Studio may have 80% to

90% of the textual lines of source code be generated by Visual Studio. See Introducing Visual

Studio, supra note 14.
30

 Patent lawyers often refer to the different ―elements‖ of a claim in a patent as ―limitations.‖

LYDIA PALLAS LOREN & JOSEPH S. MILLER, INTELLECTUAL PROPERTY: CASES AND

MATERIALS 117 (Ver. 2.2, Semaphore Press 2011). In this paper, we use the term elements to

help a reader not familiar with patent jargon.

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

flow from one source code file to another. It is not unusual that several

hundred source code files will be implicated in the analysis of a single

element of the asserted patent claim, and patent claims typically involve

multiple elements.

Fortunately, this type of source code analysis parallels the process

of software maintenance—that is, the correction of mistakes in software

and/or the addition of new functionality. Therefore the forensic software

analyst can use such maintenance programs as Understand
31

 which ingests

large volumes of source code and maps out how the individual source code

files and programmatic functions are related, building ―family trees‖ of logic

flow as it goes. Understand can then be used to navigate rapidly around the

source code, effectively ignoring the fact that the source code is distributed

across hundreds or thousands of files. This gives the forensic software

analyst (or maintenance programmer) a ―computer’s eye view‖ of the source

code sufficiently rapidly that the forensic software analyst can create a

mental model of the structure and purpose of the source code’s

programmatic logic.

c. Tools Specific for Trade Secret Misappropriation

As alluded to previously, trade secret misappropriation demands a

forensic software analysis that is more akin to that performed for patent

infringement. An asserted trade secret can be viewed as a claim in a patent

and the analysis devolves into answering the question whether the source

code performs the functionality that makes up the asserted trade secret. The

forensic software analysis is effectively the same as that for patent

infringement with the same tools providing extremely important and

necessary assistance to the analyst.

III. APPROPRIATE DISCOVERY AND PRODUCTION OF SOURCE CODE FOR

FORENSIC ANALYSIS

In federal court litigation,
32

 rules 25 through 37 of the Federal Rules

of Civil Procedure govern the discovery phase of litigation. The scope of

31

 See supra note 25 and accompanying text.
32

 While much of the analysis provided in this article is equally applicable to state law litigation

involving computer based evidence, our focus in this article is on intellectual property litigation

involving either copyrights or patents (or both). Subject matter jurisdiction for those cases rests

exclusively with the federal courts. 28 U.S.C. §1338 (2012). Trade secret protection is, for the

most part, derived from state law, but often trade secret misappropriation claims are litigated in

federal court either because of diversity jurisdiction under 28 U.S.C. §1331, or as a result of being

part of a case in which federal copyright or patent infringement is asserted. 28 U.S.C. § 1367

(2012) (defining supplement jurisdiction).

 Computer Software-Related Litigation

discoverable information is extremely broad. Rule 26 permits discovery of

―any nonprivileged matter that is relevant to any party's claim or defense.‖
33

Additionally, a ―court may order discovery of any matter relevant to the

subject matter involved in the action‖ even if that information would not be

admissible at trial, so long as it ―appears reasonably calculated to lead to the

discovery of admissible evidence.‖
34

 This section discusses what is required

for complete production of computer source code and recurring problems

encountered. This section also discusses appropriate security measures

when disclosing source code.

A. The Least Cost Production and Analysis of Source Code,

Documentation, and Other Computer-Based Evidence

While the cost increase brought on by an overly protective order is

the most significant problem in modern-day litigation involving computer

software, ineffective methods of producing software also contribute to the

expense of these types of litigation. Thus, before addressing problematic

restrictions that routinely appear in overly restrictive protective orders, we

first discuss the most cost-effective method of producing source code.

1. Source Code Production

The most cost-effective method of producing the source code for a

party is to produce the entire source code tree as it has been maintained

under the revision control system. The producing party can verify the

completeness of the source code production prior to providing the files to

the receiving party by loading the production onto a suitably configured

computer system and rebuilding an executable version (or versions) of the

program. If a functioning executable version of the program can be created

using the files, the source code production is, by definition, complete. If it

cannot be done, then the process will reveal the missing components.

It is not unusual for large programs to require several terabytes
35

 of

disk storage and counsel must anticipate that the task of just making a

verbatim copy of the encrypted source code on disk may take several days

33

 FED. R. CIV. P. 26(b)(1).
34

 Id.
35

 A terabyte is 1,000,000,000,000 (a million million) characters of information. Currently 3TB

hard disks cost approximately $139 on Amazon. AMAZON, http://www.amazon.com (last visited

Jan. 24, 2011).

http://www.amazon.com/

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

of continuous computer time. Backing up to media other than disk is not

feasible as the storage capacity of other media is insufficient to the task.
36

2. Other Files Types Required

Several other types of files also must be produced in addition to

those files containing the actual source code. Without these files, a

functioning executable version of the program cannot be created, and thus

the necessary production would be incomplete. Some additional files, such

as program documentation, are also necessary to assist in the full analysis of

the program.

a. Header Files

Rather than mindlessly restating certain groups of text lines (with

the concomitant risk of misstating), it is normal for programmers to insert

statements in the source code
37

 that include other source code files by

reference. These are called header files because such inclusion by reference

normally occurs at the start of the source code file in question. Therefore, to

make sense of any given source code file, the header files to which it refers

must also be produced.

b. Makefiles

The human-readable source code for a program must be translated

into object code before that program can control the behavior of a computer.

This involves feeding each appropriate source code file into a special

computer program called a compiler and then ―linking‖ the output from the

compiler together to form the executable object code file. A modern

computer program may involve hundreds of thousands of source code files

and this compiling and linking process is controlled by a textual file called a

―makefile.‖ Makefiles are thus the ―recipe‖ for controlling the process and

also serve to explain to a forensic software analyst how the finished program

is created.

36

 For example, a hard disk may contain 3TB (3,000 gigabytes). A standard DVD can hold 4.7

gigabytes. It would require over 600 DVDs to back up a full 3TB hard disk.
37

 See Andrew Johnson-Laird, Software Reverse Engineering in the Real World, 19 U. DAYTON L.

REV. 843, 856–58 (1994).

 Computer Software-Related Litigation

c. Revision Control Systems

Where the source code is managed by a revision control program,
38

the order should require the production of the entire source code tree. The

entire source code tree should be a required disclosure because (a) this is the

least burdensome on the producing party, (b) it contains the complete

history of the source code, and (c) it is the electronic form ―in which it is

ordinarily maintained or in a reasonably useable form or forms.‖
39

d. Required Documentation

The production almost always also includes supporting design

documentation, user manuals, software development documents (such as

project planning, budgeting, testing, bug reporting, etc.). These documents

act as a ―road map‖ without which the vast numbers of source code files are

even harder to understand.

Usually all but the largest software developers do not bother to

prepare any ―road map‖ documentation offering insights as to how the

software works and how the software’s functionality is packaged within the

source code. Thus, finding a particular piece of functionality is akin to

finding one’s way in a city where there are no street name signs, using a

map drawn on a napkin by someone you met in a bar. It is not easy.

The original source code authors do not remember accurately how

all of the source code they wrote works. This appears to be because

software is now sufficiently complex that it cannot be retained in the minds

of the original programmers, especially when months or years have elapsed

since it was written. Thus 30(b)(6) witnesses
40

 may not be relied upon to

explain where certain functionality can be found in the source code and the

forensic software analyst must construct the missing road map to navigate

around the source code.

Additional ―road map‖ documentation rarely manifests after the

initial delivery. If it does, it is usually in response to a request from the

38

 A revision control program is akin to the document management system one finds in a modern

law office. It tracks all documents and keeps a revision history showing all changes made to a

given document.
39

 FED. R. CIV. P. 34(b)(2)(E)(ii).
40

 Federal Rule of Civil Procedure 30(b)(6) permits a party to depose an entity, such as a

partnership or corporation so long as the party ―describe[s] with reasonable particularity the

matters for examination.‖ FED. R. CIV. P. 30(b)(6). In turn, ―[t]he named organization must then

designate one or more officers, directors, or managing agents, or designate other persons who

consent to testify on its behalf; and it may set out the matters on which each person designated will

testify.‖ Id. When such a designated person is deposed, they ―must testify about information

known or reasonably available to the organization.‖ Id.

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

forensic software analyst and has been prepared specifically for the

litigation; it may therefore have been prepared in haste and of dubious

completeness and accuracy.

B. Fundamental Problems in the Production of Source Code

During Discovery

It is easy to fall into the trap of believing that the source code that is

produced in litigation represents an ordered delivery of all relevant versions

of the relevant computer source code and documentation and, thus, it will be

a relatively easy task to analyze source code appropriately. In fact, recurring

problems fall into three categories, each discussed in turn below.

1. Obtaining All Relevant Source Code Files in Appropriate

Digital Format

As discussed above, ensuring complete production of the program at

issue must be a top priority. Often, significant amounts of the forensically

relevant source code will not be produced in the initial production, if at all.

Computer programs are so complex that often companies cannot keep track

of their source code. At the same time, significant amounts of forensically

irrelevant source code will be produced, but often in the wrong form.

The most usable, most cost-effective form of production is to

produce the entire source code ―tree‖ as created and maintained under the

aegis of a revision control system.
41

 Nevertheless, source code production

often appears as printed versions of source code, or the even more bizarre

form of Adobe Acrobat Portable Document Format (PDF) files created by

scanning in printed versions of source code—which are thus graphic images

and not searchable! All formats other than the original source code tree in

digital format are maximally inconvenient and significantly increase the cost

of the analysis. Furthermore, there seems to be no legal or technical basis

for not producing the source code in the form in which it is created and

maintained.
42

 Computer programmers rarely print out source code, as it is

too hard to navigate and slow navigation obscures understanding. Instead

they will use the source code tree in digital form and use specialized

41

 See supra Part II.A.1.
42

 Indeed, the Federal Rules of Civil Procedure require parties to ―produce documents as they are

kept in the usual course of business or must organize and label them to correspond to the categories

in the request.‖ FED. R. CIV. P. 34(b)(2)(E)(i). The rule also requires that if ―a request does not

specify a form for producing electronically stored information, a party must produce it in a form or

forms in which it is ordinarily maintained or in a reasonably usable form or forms.‖ Id.

34(b)(2)(E)(ii).

 Computer Software-Related Litigation

computer programs (―development environments‖) to navigate quickly

around the source code tree.

Not all relevant versions of the forensically significant source code

will be produced. It is not unusual for smaller companies not to use revision

control systems at all, or to change the revision control system between

versions as a product evolves. Additional deliveries of missing source code

may take place over weeks and/or months either as it is ―discovered‖ by the

producing party or, more likely, when the forensic software analyst

demonstrates to the parties and/or the court that the production is

incomplete. Such staggered productions will, more likely than not, require

the computer-aided forensic analysis to be redone to create a complete

picture of the entire source code production to date. Each such late partial

delivery can increase the time and cost of performing the forensic software

analysis by an order of magnitude.

While purposefully engaging in conduct merely to increase the cost

and inconvenience of discovery is expressly prohibited by the Federal Rules

of Civil Procedure,
43

 computer source code productions in any form other

than the original source code tree does just that. Similarly, partial

productions and incremental productions, both of which require re-analysis,

also serve to increase the cost and inconvenience of the receiving party. The

discovery order agreed to by the parties should not tolerate inconvenient

formats for production and should be designed to ensure complete

production from the beginning.

2. Obtaining Necessary and Relevant Information Beyond the

Source Code Files

As described above, in addition to the actual source code of the

program, several other types of files also must be produced in order to

obtain a functioning executable version of the program.
44

 The

documentation contained within the source code, by and large, will be

acceptable, but much of what should have been written will not have been,

or having been written will not have been updated to correspond to the

current version of the source code, thus rendering it obsolete and misleading

in places. Programmers in general appear to hate preparing

documentation—perhaps because good documentation is really hard work to

prepare—so much so that technical writers are employed to write the

documentation and often they are not programmers, nor do they have access

to the most current version of the software.

43

 See supra note 5.
44

 See supra Part III.A.2.

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

Reverse engineering source code is much harder than writing it in

the first place. The original programmer has the benefit of understanding

his or her intent. The reverse engineer must glean that intent by

constructing mental models of the source code ―as is,‖ without the benefit of

the original intent. Unless suitable accurate comments are interwoven in the

source code, the source code will reveal what is being done, but not why.

The understanding of why has to be re-synthesized by the forensic software

analyst as they create a mental model of what the source code would do

when compiled and executed on a computer. To the extent that additional

documentation exists, it should be promptly produced as part of the

discovery process.

All third party source code products used to augment the source

code should also be part of the initial production. A party may assert that

such production would be a breach of the license agreement for that

software or that such production would constitute copyright infringement.

To the authors’ knowledge there has never been a breach of license or

copyright action filed when third party source code and/or software has been

produced in the context of litigation and subject to a protective order.

However, the issue of production of relevant third party software that is a

component of the program at issue must be addressed in the discovery order

agreed to by the parties.

3. Shifting the Cost of Discovery for Incomplete Production

One possibility for encouraging full and complete production

initially is for the shifting of costs associated with incomplete production.
45

Rule 37 permits a court to award ―reasonable expenses, including attorney's

fees, caused by‖ a party’s failure to comply with a discovery order, ―unless

the failure was substantially justified or other circumstances make an award

of expenses unjust.‖
46

 That same rule provides that ―an evasive or

incomplete disclosure, answer, or response must be treated as a failure to

disclose, answer, or respond.‖
47

The stipulated order may contain a provision concerning the

payment of expenses associated with disclosure. While the default

assumption is that each party will pay its own expenses, any clause

addressing the payment of expenses should address whether a court could

45

 See Martin H. Redish, Electronic Discovery and the Litigation Matrix, 51 DUKE L.J. 561, 608

(2001) (advocating cost-shifting for requests involving electronic information that is stored in a

format not reasonably accessible by the producing party).

46 FED. R. CIV. P. 37(d)(3).
47

 Id. 37(a)(4).

 Computer Software-Related Litigation

order the payment of expenses despite the agreement. Without addressing

such a scenario, the silence of the agreement may be difficult for the court to

interpret.
48

C. Important and Appropriate Security measures

Parties disclosing their software are understandably concerned about

the risk of disclosure beyond the expert(s) hired by the opposing party.

Sometimes they fear disclosure to the opposing party as well as disclosure to

independent third parties. The intellectual property assets contained in the

source code may have taken literally decades of person-hours to create and

can be of significant value. Further, in this age of rapid and global

dissemination, parties fear that if proprietary source code being disclosed

were to be leaked to the outside world the value could be totally destroyed

in a matter of hours, if not minutes, and could never be recaptured.
49

Because of this, there are several important security protocols that should be

followed concerning the discovery and handling of that source code.

1. Security in Transit

The source code produced should be produced on an encrypted disk,

rather than using file-by-file encryption which is overly burdensome on both

the producing party and the requesting party as each file must be

decrypted/encrypted individually. Such file-by-file processing can lengthen

a process that would normally take hours into days.

Products such as TrueCrypt
50

 or Pretty Good Privacy (PGP)
51

 both

provide military-grade encryption for entire hard disks. Such encryption is

48

 See, e.g., Thabault v. Chait, No. 85-2441, 2009 U.S. Dist. LEXIS 576 (D.N.J. Jan. 5, 2009). In

Thabault, the parties agreed to share the cost of daily transcripts during trial. The court held that

such an agreement did not preclude an award of costs to the prevailing party. The agreement to

share costs of transcripts was ―a far cry from agreeing . . . about what costs the prevailing party

could recover.‖ Id. at *16.
49

 Many high profile leaks have occurred, although none were the result of disclosures related to

litigation. See, e.g., United States v. Genovese, 409 F. Supp. 2d 253, 257–58 (S.D.N.Y. 2005)

(prosecuting defendant for his involvement in a significant leak of Microsoft Corporation’s source

code for its computer operating systems, Windows NT 4.0 and Windows 2000). But see Robert

Lemos, Cisco Investigates Source Code Leak, CNET NEWS BLOG (May 17, 2004),

http://news.cnet.com/Cisco-investigates-source-code-leak/2100-7349_3-

5213724.html?tag=contentMain;contentBody;1n (indicating that the damages might not be

significant of leaks of computer source code). See also Victoria A. Cundiff, Reasonable Measures

to Protect Trade Secrets In a Digital Environment, 49 IDEA 359, 395–408 (2009).
50

 TRUECRYPT, http://www.truecrypt.org, (last visited Mar. 11, 2011). Truecrypt is well trusted in

the computer industry and is available at no cost. Although counterintuitive to some, the best

encryption software is that which is subjected to public scrutiny, thus benefiting from the

combined wisdom of the crowd and avoiding any hidden ―back doors.‖

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

sufficiently strong that in the worst-case scenario that the disk falls into a

malfeasant’s hands, that malfeasant will not be able to decrypt the source

code and associated files. Furthermore, this encryption is ―transparent‖ in

that once the disk has been mounted on the computer and the decryption

password entered, the disk’s contents appear to the computer as unencrypted

data even though, on the disk, the data remains encrypted.
52

To achieve even stronger levels of encryption for individual files, an

encrypted file can be doubly or triply encrypted using different passwords—

somewhat like stacking Russian Dolls, with one encrypted doll inside

another.

Encryption by itself does not prevent unauthorized use of the

encrypted data; therefore the encryption/decryption keys have to be

managed very carefully.
53

 If a key falls into the wrong hands the value of

the encryption is vitiated. At least two people at the producing party and

two people at the receiving party should be designated key managers, and

they should store the encryption keys in an encrypted file using a different

encryption key that only the key managers know.

2. Packaging for Shipment

Hard disks must be treated with care like Fabergé eggs. On more

than one occasion we have received hard disks that have been shipped with

woefully inadequate packaging, arriving at their destination as no more than

effective paperweights. Each hard disk must have at least one inch or more

of shock-absorbing packaging. Computer system enclosures and RAID
54

enclosures are very poor shipping containers as they are rigid and transmit

external shocks to the hard disks within. We have been the recipients of

computer systems where the hard disks have come dislodged in transit,

destroying themselves and the computer system like a loose cannon on the

deck of a tall ship.

51

 Pretty Good Privacy, WIKIPEDIA, http://en.wikipedia.org/wiki/Pretty_Good_Privacy (last

visited July 20, 2012).
52

 If a malfeasant were to burst into the room and disconnect the disk, its contents are still fully

encrypted and inaccessible.
53

 NEILS FERGUSON ET AL., CRYPTOGRAPHY ENGINEERING: DESIGN PRINCIPLES AND

PRACTICAL APPLICATIONS 257–313 (2010).
54

 Redundant Array of Inexpensive Disks—a group of several hard disks that are combined by

hardware or software to present to the computer system as a single larger hard disk.

 Computer Software-Related Litigation

3. Security for Printed Source Code in Transit

While we strongly urge against production of source code through

printed copies,
55

 if the parties agree to disclosure by printed copies, that

printed source code in transit is vulnerable to being misplaced or falling into

unauthorized hands. If a Federal Express envelope is intercepted, then the

source code is in full view with nothing to prevent a malfeasant from

making use of it. It is far more secure to take the source code, already

formatted for printing, and create Adobe PDF files. These files can then be

encrypted and burned onto a DVD that is then shipped by Federal Express.

The recipient can then decrypt the PDF file to either view it or print it as

required. If such a DVD falls into the wrong hands, the encrypted source

code cannot be viewed or used.

4. Forensic Analysis: Stand-Alone Computer Isolated from the

Internet

The analyst(s) performing the appropriate forensic analysis on the

source code should work on a computer that is physically isolated from the

Internet to avoid possible unauthorized access to the source code. While the

source code will be encrypted on disk, there will be periods of time during

the analysis where the source code will, of necessity, not be encrypted inside

the computer’s memory. This is when the source code will be at its most

vulnerable.

Using a stand-alone computer does increase the cost of the analysis,

but usually only by the cost of the computer and the costs of additional

software licenses for the analytical software tools. This increased cost is

appropriate for the level of security it provides.

D. Model Clauses for Ensuring Appropriate and Complete

Production

Often the discovery order agreed to by the parties, while titled

―protective order,‖ will specify what is to be disclosed and its format, as

well as contain clauses that would normally be recognized as being in a

protective order. The following recommended language accomplishes the

production of computer source code in the most cost-effective and secure

manner, permitting forensic software analysis of source code with the

minimum of wasted time, effort, and burden (and thus cost) to either of the

parties. It is presumed that preceding sections of the protective order

appropriately define key terms (such as the Source Code).

55

 See supra Part III.B.1 and infra notes 82–83.

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

Source Code will be made available for inspection

and analysis as follows:

a) The producing party will make available all

relevant versions of the Source Code by placing the

entire Source Code tree(s) for all versions, as

maintained by the revision control system in the

format in which it was created and maintained by

the producing party, on a hard disk encrypted with

TrueCrypt (or equivalent disk-level encryption) (the

―encrypted disk‖). A secure password consisting of

two strings of alphabetic characters, each eight

characters or more, separated by one or more digits,

shall be used. The strings of characters shall not

form words found in the Merriam-Webster

dictionary.
56

b) The Source Code production shall include all

relevant Source Code files including header files,

makefiles, and third party source code and object

code files used by the executable version(s) of the

program in format in which it was created and

maintained.

c) All produced materials that are in color in their

original form shall be produced in color.

d) All produced materials that exist in textual form

shall be produced in the original form in which they

were created and maintained by the producing

party.

e) Prior to producing the entire Source Code tree(s) to

the receiving party, the producing party will verify

the completeness of the Source Code production by

recreating an executable version of each version of

the computer program for which the Source Code is

being produced using only those files on the

encrypted disk. Evidence of such recreation will be

provided to the receiving party on the encrypted

56

 This eliminates the use of a brute-force ―dictionary attack‖ on the password. The easiest way to

accomplish constructing such a password is to create an acronym from a phrase. For example:

mhalltdws—Mary had a little lamb, the doctor was surprised.

 Computer Software-Related Litigation

disk along with a description of the process used

sufficient to permit the receiving party to replicate

the recreation.

f) The producing party will provide the receiving

party a complete list of the software tools used to

create and maintain the Source Code tree and to re-

create the executable version(s) of the computer

program. If such tools are no longer available for

license by the receiving party, the producing party

shall provide copies of the tools on the encrypted

hard disk, along with documentation on how to use

the tools, and with appropriate license keys as

required to use the tools.

g) The producing party shall provide a ―road map‖

document that describes the organization of the

Source Code on the encrypted disk, explaining

which versions of Source Code are contained within

the tree and the overall structure of the tree such

that the receiving party can understand the various

components of the Source Code tree. This road

map shall also describe the locations and function

all of the non-Source Code elements on the

encrypted disk including, but not limited to, the

third party components and the software used by the

producing party that are on the encrypted hard disk.

h) The producing party shall provide all supporting

documents relevant to the Source Code such as

design specifications, diagrams, project

management and planning documents, budgeting

documents, testing scripts and data, and bug reports,

in the form in which they were originally created

and maintained. Where such supporting documents

were created using software that is not available on

the open market, then the producing party will

provide all necessary software to permit the

forensic software analyst to examine and, if

necessary, print all supporting documents.

IV. APPROPRIATELY PROTECTIVE AND OVERLY-PROTECTIVE ORDERS

Providing for the appropriate scope of discovery in cases involving

allegations of intellectual property infringement is only half the battle.

Including clauses that will ensure protection against disclosure beyond the

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

litigation remains extremely important. After providing an overview of

protective orders in federal litigation, we propose a set of provisions that

would guard against disclosure while permitting analysis to proceed.

This section concludes with an examination of restrictions that we

have seen in recent overly protective orders. For each such restriction we

will state hypothetical language that paraphrases actual clauses of extant

protective orders. The primary concern with such overly protective order

clauses is that they are insidious—they are often little more than ―security

theater,‖
57

 offering an illusory benefit while significantly discommoding the

receiving party by increasing the burden and cost of performing the source

code analysis.

A. Overview of Protective Orders in Federal Court Litigation

In the federal courts, Federal Rule of Civil Procedure 26 governs

protective orders.
58

 Adopted to safeguard parties and witnesses in response

57

 For an overview of the concept of ―security theater,‖ see Security Theater, WIKIPEDIA,

http://en.wikipedia.org/wiki/Security_theater (last visited July 19, 2011).
58

 Fed. R. Civ. P. 26(c) specifically provides:

A party or any person from whom discovery is sought may move for a

protective order in the court where the action is pending—or as an alternative

on matters relating to a deposition, in the court for the district where the

deposition will be taken. The motion must include a certification that the

movant has in good faith conferred or attempted to confer with other affected

parties in an effort to resolve the dispute without court action. The court may,

for good cause, issue an order to protect a party or person from annoyance,

embarrassment, oppression, or undue burden or expense, including one or

more of the following:

(A) forbidding the disclosure or discovery;

(B) specifying terms, including time and place, for the disclosure or

discovery;

(C) prescribing a discovery method other than the one selected by

the party seeking discovery;

(D) forbidding inquiry into certain matters, or limiting the scope of

disclosure or discovery to certain matters;

(E) designating the persons who may be present while the

discovery is conducted;

(F) requiring that a deposition be sealed and opened only on court

order;

(G) requiring that a trade secret or other confidential research,

development, or commercial information not be revealed or be

revealed only in a specified way; and

(H) requiring that the parties simultaneously file specified

documents or information in sealed envelopes, to be opened as the

court directs.

 Computer Software-Related Litigation

to the extremely broad right of discovery,
59

 protective orders are an

important tool allowing parties the chance to restrict the range of discovery

in situations that might cause injury and also to restrict subsequent

disclosure of information produced in discovery. When a party violates a

protective order, a district court may impose appropriate sanctions to

remedy the violation.
60

In intellectual property litigation most protective orders are

negotiated between the parties and entered by the court as stipulated

orders.
61

 Ideally, the attorneys will engage their experts prior to agreeing to

a protective order with opposing counsel. This will permit consultation with

the expert concerning the appropriate and inappropriate restrictions in any

given case.

In the following sections we propose example protective order

language that both meets the technical requirements at hand and also

minimizes the time required and the costs to the litigants.

B. Model Clauses of an Appropriately Protective Order
62

It is appropriate to include provisions in the ―protective order‖

designed to guard against disclosure of the source code. The following

recommended language provides sufficiently robust protection yet will

permit the forensic software analysis of source code to proceed with the

minimum of wasted time, effort, and burden (and thus cost) to both of the

parties. As with the proposed clauses above, it is presumed that preceding

sections of the protective order appropriately define key terms, such as the

Source Code.

59

 8a CHARLES ALAN WRIGHT, ARTHUR R. MILLER & RICHARD C. MARCUS, FEDERAL

PRACTICE AND PROCEDURE: CIVIL § 2036 (3d ed. 2010).
60

 6 JAMES WM. MOORE ET AL., MOORE'S FEDERAL PRACTICE § 26.108[2] (3d ed. 2010). See

Poliquin v. Garden Way, Inc., 154 F.R.D. 29, 31 (D. Me. 1994) (attorney sanctioned for violation

of protective order that discovery materials not be disclosed to anyone other than counsel for

parties or witnesses). There is a limit to what sanctions are appropriate. MOORE ET AL. §

26.108[2]. See Coleman v. Am. Red Cross, 979 F.2d 1135, 1141 (6th Cir. 1992) (court abused

discretion in enjoining plaintiff from suing blood donor whose name was obtained in violation of

protective order).
61

 The rule governing protective orders encourages such agreement by requiring any party that

seeks a protective order from the court to certify that they have ―in good faith conferred or

attempted to confer with other affected parties in an effort to resolve the dispute without court

action.‖ FED. R. CIV. P. 26(c). Additionally, because often these cases require both parties to

disclose source code, it is in both parties’ interests to stipulate to terms for disclosure that are

beneficial.
62

 We begin the lettering here with ―i‖ because the appropriate scope provisions were identified

above as a–h. See supra Part III.C.

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

Specifically omitted from the following sections are the sections of

a protective order that deal with the designation of confidential materials,

the marking of such materials, and restrictions that typically might limit to

whom confidential materials may be disclosed. Typically, these sections do

not bear on increased or decreased costs of discovery. If they do, the

egregious nature of the restrictions is self-evident, as they do not demand

knowledge of computer science and forensic software analysis.

i) The receiving party shall disclose to the producing

party the identity of any expert who will be given

access to the materials disclosed pursuant to this

order. Any objection to any individual expert must

be made within five days of the identification of the

individual. After five days, with no objection from

the producing party, the identified expert shall be

given access to the materials disclosed, along with a

copy of this protective order. If producing party

objects to an identified expert, the receiving party

shall either select a new expert or shall petition the

judge for approval of the expert already selected.

j) The receiving party (counsel and experts) on receipt

of the encrypted hard disk containing the

production shall immediately create a backup copy

of the encrypted disk. All subsequent analysis will

be performed on the backup copy of the encrypted

disk (the working copy). The original copy of the

encrypted disk shall be placed in a bank safety

deposit box under the custody and control of the

receiving party. It may be removed from the safety

deposit box if and when it becomes necessary for

the receiving party to make another working copy

of the contents of the encrypted hard disk.

k) When not in use, the working copy of the hard disk

shall be disconnected from the computer system

and placed in a locked container (e.g., a safe or

filing cabinet) at the premises of the receiving

party.

l) The Source Code analysis shall be performed on a

computer in a secure room at the receiving party’s

premises. Access to this room will require a

 Computer Software-Related Litigation

physical combination door lock
63

 to be unlocked.

The combination will only be disclosed to those

individuals needing to enter the secure room for the

purposes of performing the analysis. Janitorial and

maintenance staff will be escorted by a forensic

software analyst into and out of the secure room

and supervised by that analyst while in the secure

room.

m) The computer in the secure room shall not be

connected to the Internet, but may be connected to

external peripheral devices via a local network

provided (a) that network does not extend outside

the secure room and (b) such devices are necessary

to the performance of the analysis (e.g., external

disks, printers).

n) The automated logging capabilities of the operating

system on the stand-alone computer(s) shall be

enabled to create a date/time stamped log of which

users log on to the computer and, if appropriate,

which files on the computer system are accessed.

Each forensic software analyst shall use a unique

user account assigned to them when performing the

analysis. The operating system log files shall be

transmitted to the producing party upon request by

the producing party.

o) A second encrypted hard disk shall be used to store

the interim results of the analysis. A backup copy

of this encrypted hard disk may also be made to a

third encrypted hard disk. This interim results disk

and backup interim results disk shall also be

removed from the secure computer when not in use

and shall be stored in the same locked container as

the working copy of the encrypted Source Code

disk.

p) TrueCrypt (or equivalent) shall also be used to

encrypt the interim and backup interim disks and

63

 Physical keys can be misplaced. Combination locks provide better security because (a) the

combination can easily be changed, and (b) the combination can be communicated by voice to

authorized persons.

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

the same encryption/decryption passphrases shall be

used as for the encrypted Source Code disk.

q) At the discretion of the forensic software analysts

performing the analysis, more than one computer

may be used for the purposes of analysis if this is

deemed more cost-effective or reduces the time for

the analysis. Additional computers shall be

subjected to the same conditions as above. Each

shall be permitted its own working copy of the

Source Code disk, interim results disk, and backup

interim results disk. Each shall be permitted to be

on the same network as other computers subject to

the previously stated conditions. Such networks

will be through physical connections only and shall

not be established or maintained through wireless

networking capabilities.

r) Copies of the Source Code and other materials

produced, regardless of whether they are electronic

or paper, shall only be made for the purposes of

litigation. All copies shall be securely destroyed

upon completion of the litigation. Optical media

copies shall be physically shredded. Electronic

copies on hard disks or thumb-drives shall be

overwritten using a commercially available

program designed for secure erasure in

conformance with the National Institute of

Standards and Technology SP-800-88.
64

s) To produce paper printouts of Source Code and/or

interim analysis results, the printouts shall first be

written to the encrypted interim hard disk (and the

backup interim hard disk) to create ―printout files‖

in the form of Adobe Acrobat Portable Document

Format (PDF) files. [Optional restriction: No paper

printouts of Source Code shall be used for

correspondence between the parties, expert reports

or deposition exhibits. Instead, reference shall be

made to the Source Code by file directory path, file

64

 See Richard Kissel et. al., Guidelines for Media Sanitation, NAT’L. INST. OF STANDARDS &

TECH. Spec. Publ. 800-88 (2006),

http://csrc.nist.gov/publications/nistpubs/800-88/NISTSP800-88_rev1.pdf.

 Computer Software-Related Litigation

name, and line numbers within the Source Code

file.]

1) All such printout files shall bear a heading

line that shows, at a minimum, the full ―file

path‖ and file name of the file from which

the Source Code is being printed. Marginal

numbers starting at 1 and increasing by 1

for the entire Source Code file will identify

the Source Code line numbers. Any

redactions or resequencing of Source Code

lines shall preserve the original Source

Code file line numbers and will bear an

interlineated legend identifying that a

redaction or resequencing has occurred.

2) The heading line shall also bear, at a

minimum, a page number [and, optionally,

the date and time when the printout was

produced] designation for ease of reference.

3) The footing line shall bear, at a minimum,

the appropriate confidentiality designation.

4) All such printout files shall be stored in a

specific subdirectory on the interim and

backup interim hard disks to facilitate

review by the both parties.

5) All such printout files shall have

meaningful names that describe the

contents of the files, the date and time when

they were created, a version number, and

the initials of the person creating the file.

6) All such printout files shall be preserved

and will be produced to the producing party

on request.

7) Printout files may only be shipped or

transported in encrypted files on computer

media or on encrypted hard disks. The

same encryption software used for the

Source Code disk shall be used and the

same encryption/decryption passphrase

shall be used.

8) Upon termination of the litigation all such

printout files shall be destroyed as specified

in paragraph p, above.

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

t) Physical paper printouts of printout files shall only

be created where it is necessary for the purposes of

the analysis to have them on paper or for exhibits at

deposition or trial.

1) When not actually being used these

physical paper printouts shall be stored in a

locked container along with the interim and

backup interim hard disks.

2) Physical paper printouts shall be destroyed

using a chipping shredder once they have

been superseded or are no longer relevant.

3) Except as required for deposition exhibits

and demonstrative exhibits at trial, no

physical paper printouts shall be shipped or

transported by experts or counsel.

C. Overly Protective Orders

Our actual measured experience is that overly protective orders can

increase the cost of forensic software analysis by somewhere between six

and ten times the cost of the forensic software analysis conducted using the

suggested protective order language above. In this section, we summarize

clauses that might typically occur in an overly protective order pertaining to

source code analysis and discuss the presumed intent of that language as

well as the consequences. Where possible, we then explain how a specific

model clause or clauses appropriately addresses the producing party’s

legitimate concerns. In some cases we provide an alternative clause that

should achieve the original intent of the overly protective clause. We also

identify potential objections that a producing party’s counsel may raise

concerning why the model or suggested alternative is insufficient. In this

discussion it will be clear that some of the clauses often appearing in

protective orders seem to have no legitimate basis, but rather are designed to

make analysis maximally inconvenient and expensive. Inappropriately

driving up the cost of discovery is, as discussed above,
65

 prohibited under

the Federal Rules of Civil Procedure.

65

 See supra note 5.

 Computer Software-Related Litigation

1. Stand-Alone Computer Not At Forensic Software Analyst’s

Office: Overly Protective Clauses

a. Stand-Alone Computers: Location

It is not unusual, for security reasons, for the parties to agree that the

confidential source code be examined on a computer at a mutually agreed

upon location. Typical language is:

Computer source code will be made available on a

stand-alone computer at a mutually agreed-upon

location.

The presumed intent is that a major risk for proprietary source code is that

the computer on which it is stored will be accessed (―hacked‖) and the

source code copied from the computer for nefarious use. The presumption

is that this risk is eliminated by using a stand-alone computer that has no

connections whatsoever to the Internet.

The innocuous phrase ―a mutually agreed-upon location‖ is a major

cause for concern if that location is anywhere other than the offices of the

forensic software analyst. If the location requires travel, or access to the

stand-alone computer is regulated in any way, this will increase the forensic

software analysis time and cost dramatically. The two major cost drivers are

(1) potential travel to and from the remote site, and (2) the implicit fact that

access to the stand-alone computer will be subject to date- and time-based

restrictions.
66

Forensic software analysis usually requires many hours in front of

the stand-alone computer, along with many hours during which the

computer is running software analyses unattended. In the early stages of

analysis it is not unusual that the stand-alone computer will be left powered

on and processing the source code for several days at a time.
 67

Thus, access to the stand-alone computer anywhere other than the

forensic software analysts’ own office will likely necessitate significant

travel and accommodation costs, as well as considerable ―dead time‖ while

the analyst waits for the computer to grind through the multi-day analysis

process. During such processes, there is often little useful work that can be

done, and, of course, given Murphy’s Law and Johnson-Laird’s Sixth Law

66

 The problem of limited hours of access is addressed in the next subsection.
67

 If, as unfortunately is usually the case, the source code production is incomplete and new ―code

drops‖ are received once the forensic software analysis has started, then these multi-day processing

runs will need to be repeated, requiring multiple journeys to the stand-alone computer’s location.

See supra Part III.B.1. Utilizing the discovery plan provided in the sample clauses in this article

should reduce the risk of this situation occurring.

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

of Forensics,
68

 should the analyst leave the stand-alone computer’s location,

there is an increased probability that something will go wrong with the

processing run.

The most significant way to reduce the cost of forensic software

analysis is to permit the stand-alone computer to be located at the forensic

software analyst’s own office. This simple change slashes the time and cost

for the analysis when compared to having the stand-alone computer

hundreds of miles away, or even just a few miles away. Clause l, above,

achieves this solution.
69

It is not unusual for the producing party to object to having the

computer at the forensic software analyst’s office on the basis that the

source code will be less secure. However, what keeps the source code

secure is encryption
70

 not physical access. Utilizing the model clauses

provided above, the stand-alone computer will be devoid of the source code

as the source code is only ever stored on external disks that are placed in a

locked safe when not in use.
71

Even if a malfeasant were to steal the stand-alone computer and the

encrypted disks, it would require decryption of the source code. Given that

TrueCrypt or PGPDisk is used and that the decryption keys are kept secure,

such unauthorized decryption will require a huge amount of computer power

and is, for all practical purposes, infeasible. In 2008, the FBI tried for five

months to break TrueCrypt encryption and failed.
72

 That said, no digital

encryption scheme should be viewed as completely impregnable, but the

issue here is that the source code should be protected to the same level or

better than when it is on the servers or computers of the producing party.
73

68

 Which states that a computer is more likely to crash when one is not watching it than when one

stares at it.
69

 See supra Part IV.B, cl. l.
70

 See TRUECRYPT, supra note 50 and accompanying text. Sample clauses a and p above require

the use of sufficiently robust encryption to protect the files.
71

 Of course, the stand-alone computer is required to not be connected to the Internet. See supra

Part IV.B, cl. m and o; see also supra note 70 and infra notes 72–73 and accompanying text.
72

 See Not even FBI was able to decrypt files of Daniel Dantas, G1: O PORTAL DE NOTICAS DA

GLOBO (Jun. 25, 2010, 10:35 AM)

http://www.webcitation.org/query?url=g1.globo.com/English/ noticia/2010/06/not-even-fbi-can-

de-crypt-files-daniel-dantas.html. This is not to say that TrueCrypt encryption can never be

broken, but it does indicate that the encryption is very, very hard to crack.
73

 Indeed, many of the provisions in the model clauses are designed to ensure the physical security

of the computer on which the analysis is performed and the security of all storage media on which

the code or portions of the code are reproduced.

 Computer Software-Related Litigation

There is also a sub-text at issue in the overly protective clause and

objections to not using such a clause. At its base, the producing party may

be concerned about the trustworthiness of the opposing party’s expert. Can

the forensic software analyst employed by the opposing party be trusted

sufficiently to be given access to the source code, or will the expert indulge

in wholesale copying of the source code for nefarious reasons? The

discovery and protective order agreed to by the parties requires all persons

that will be given access to the disclosed files to be identified.
74

 The order

further specifies that the disclosing party have a set period (e.g., five days)

in which to object to the expert before that expert may be given access to the

disclosed materials. The disclosing party may object to the selected expert

on the grounds of trustworthiness or expertise.
75

 If the forensic software

analyst cannot be trusted, then counsel for the receiving party should engage

different forensic software analysts rather than permit their client to suffer

the massive increase in costs imposed by the producing party’s demand that

the stand-alone computer not be located in the forensic software analyst’s

offices.
76

b. Stand-Alone Computer(s): Hours of Access

Given that counsel have the mind-set that it will be cost-effective

for the stand-alone computer to be located at either law offices or a

software-escrow firm’s offices in spite of the increased time and cost of so

doing, it is not unusual for the protective order to contain a clause such as:

The producing party shall make reasonable efforts

to provide access to the stand-alone computer(s) during

from 8:00 a.m. through 6:00 p.m. on normal working days.

74

 See supra Part III.D, cl. i. The Federal Rules of Civil Procedure provide for the disclosure of

testifying experts. FED. R. CIV. P. 26(a)(2). The model order requires this disclosure occur earlier

than the rules require, and also requires disclosure of all experts, regardless of whether they will

testify at trial.
75

 ―There are only a few ways to completely ruin your reputation as a forensic software analyst and

breaching a protective order is the best one.‖ The late Stephen J. Davidson, Esq.
76

 While the selection of a forensic software analyst is outside the scope of this paper, some

fundamental questions may help to weed out the inappropriate analyst:

a) Is the office where the stand-alone computer going to be located protected

by a professionally installed and monitored building alarm system?

b) Is this office protected by doors with deadbolts?

c) Has the forensic software analyst ever had prior issues regarding

maintaining source code securely?

d) Does the forensic software analyst understand how to use and maintain

encrypted source code?

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

The presumed intent of this clause is that the forensic software analysis

should be confined to normal business hours. This is further presumed to

avoid issues of providing access to facilities and/or logistical issues for

supervision of the analyst.

The consequence of this restriction can be disastrous in terms of the

burden—and the resultant cost increase—placed on the receiving party. The

software tools used to perform the forensic software analysis on the stand-

alone computer will usually need to run for more than the normal working

day and it is rare that the analyst will be able to leave the stand-alone

computer running overnight. Thus, there is a Catch-22: the computer needs

to be left running an extended source code analysis program for more than

eight hours, but the computer cannot be left powered on for more than eight

hours. Therefore, the analysis run can never be run. Of course, even if the

particular processing run is likely to take, say, four hours, then it can be

started no later than 2 p.m.

Unfortunately, it is hard to predict how long such an analysis run

will take—the duration depends in large part on the data being analyzed.

We have seen situations where many hours have been wasted because the

analysis software processing has had to be aborted at 6:00 p.m., only to be

restarted from the beginning the next day in the hope that it will finish in

time.

A further presumed unintended consequence is that the forensic

software analyst must suspend all analytical work during weekends and

holidays. Given that the stand-alone computer’s location requires travel to a

distant city, this is maximally inconvenient to the analyst and serves to

increase the time and cost that the analysis takes.

The simple solution is to permit the stand-alone computer to be

located at the forensic software analyst’s office where access is not fettered

by the day and time. Placing the source code on a disk-level encrypted

external hard disk and permitting the stand-alone computer and encrypted

disk to be at the forensic software analyst’s own offices where it will be

placed in a locked room will allow long duration analysis processing to

continue uninterrupted seven days a week, should that be necessary (and it

often is).

As before, the producing party typically objects based on the

misguided assumption that the security of the source code is based on

physical access to the stand-alone computer and the hard disk that contains

it. As explained above, it is the encryption of the source code that provides

 Computer Software-Related Litigation

the security, not controlled access to the encrypted hard disk or the stand-

alone computer.
77

c. Stand-Alone Computer(s): Proscribed Items in Room

Containing Stand-Alone Computer

When appropriate concern to prevent inappropriate copying turns

into paranoia, a clause like the following appears:

No recordable media or recordable devices, such as

sound recorders, computers, cellular telephones, peripheral

equipment, cameras, CDs, DVDs, or drives of any kind,

shall be permitted into the room with the stand-alone

computer.

The presumed intent is to prevent copying of the source code from the

stand-alone computer by prohibiting anything apparently capable of copying

the source code near the stand-alone computer.

The primary unintended consequence becomes clear when there is a

hardware or software problem with the stand-alone computer. The forensic

software analyst can now only make notes about the failure, then leave the

room to make a cell phone call—only to have to dash back into the room

and try something—and then leave the room to get back to the phone.

We have seen situations where it took five calendar weeks to get the

stand-alone computers working reliably, and, in large part we were

significantly discommoded by not being able to talk to colleagues,

technicians or even the producing parties’ counsel while being seated in

front of the stand-alone computer.

We have also seen cases where one forensic software analyst is in

one city analyzing part of a software product, and, at the insistence of the

producing party, another forensic software analyst has been forced to go to

another city to analyze another part of the same software product. The only

way to discern which were the relevant parts of the source code was to have

these two forensic software analysts leaving their respective stand-alone

computer rooms with hand-written and memorized information, speaking

with each other on their cell phones, then returning to the stand-alone

computer to refine their respective analysis. This continued for the better

part of a week and created activity more in line with the Keystone Cops than

with 21st century forensic software analysis—and, of course, the receiving

party was footing the increased bill for the unnecessary burdens imposed by

the overly-protective order. The simple solution is to permit the stand-alone

77

 See supra notes 70–73 and accompanying text. And, of course, the stand-alone computer is not

connected to the internet. See supra Part IV.B, cl. m.

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

computer to be located at the forensic software analyst’s office where access

is not fettered by the day and time.

If, on the other hand, the parties stipulate to locating the stand-alone

computer at a third party or law office, then the minimum cost solution for

this presumed intent requires a multi-pronged approach:

a) Modify the stand-alone computer so that no devices are attached to

it that can create copies (e.g., remove the DVD burner and replace it

with a DVD reader, disable the unused USB ports, etc.); and

b) Permit the use of cell phones without built-in cameras in the stand-

alone computer room and have a proctor be in the stand-alone

computer room during any cell phone calls.
78

Source code is such unusual text, so littered with symbols, that

dictating it into a cell phone is impractical in the extreme, and if the proctor

observes the phone call it will be immediately apparent if any kind of

systematic dictation of source code is occurring.

d. Stand-Alone Computer(s): Hardware Configuration

In situations where a fundamental premise is that the stand-alone

computer(s) is/are not provided by the forensic software analyst, typically

there is language in the protective order to the effect of:

The stand-alone computer must be sufficiently

state-of-the-art (in terms of processor speed, memory, etc.)

to support a review of the source code.

It is presumed that this clause will ensure that suitable computers are

provided that will be up to the task of the analysis. However, unless the

forensic software analyst is involved in the specification of the computers in

question, there is only a small chance that they will have sufficient

computing power and storage, as almost no attorneys and few computer

scientists understand the intense computing load that forensic software

analysis places on a computer system.

While the presumed intent of this clause appears well intentioned, in

fact the clause is effectively meaningless. For example, a given computer

could ―support a review of the source code,‖ but be so underpowered that

that review might take four or six times longer than it needs to. The clause

makes it appear that the producing party is cooperating with the other party

without actually doing so.

78

 If the proctor is physically in the room for the cell phone calls, the proctor could also ensure that

no images are being captured if the cell phone has a camera. The requirement of a proctor is

discussed in more detail below. See discussion infra part IV.C.1.j.

 Computer Software-Related Litigation

We have repeatedly seen problems with computers that are

underpowered for the task at hand. In one case, the computers were

purchased from Fry’s Electronics and chosen because they were the only

computers available the day before the forensic software analysis was due to

start. The computers were running Microsoft Windows Home Edition,

which is a completely suboptimal choice for the heavy-duty computational

requirements imposed by forensic software analysis. In another case, the

hard disk of the computer was barely large enough to contain the

compressed version of the source code, and nowhere near large enough to

permit the source code to be completely uncompressed for analysis.
79

Purchasing computer hardware of sufficient computing power is no longer

just a case of buying the hardware and starting to use it – the hardware must

be thoroughly tested before being subjected to the typical forensic software

analysis workload. Such workload will keep the central processing units

running flat-out for days on end, and will subject the hard disks to intense

activity.

Again, the best solution is to permit the analysis to occur at the

analyst’s office. The specification of the hardware configuration would not

be required and the model clauses address the appropriate security and

copying concerns. If the producing party is unwilling to permit the analysis

to be performed at the forensic software analyst’s office, the next best

solution is to permit the analyst to arrange for suitable computer(s) to be

shipped to the appropriate location, pre-configured, tested, and ready for

use. Such hardware will have been selected to ensure that it is capable of

the analysis task at hand and will have a fast enough central processing unit,

sufficient random access memory, and large enough disk storage.
80

79

 Data is represented in a computer in a somewhat inefficient way, taking up more memory space

than it really needs. As a real-world human example, we use abbreviations for compression:

RSVP, ASAP, OK, LOL, and so on. The same principles can be applied to computer source code

using modestly priced (or even free) software that compresses an original file to a fraction of its

size. For an introduction to the concept of data compression, see Data Compression, WIKIPEDIA,

http://en.wikipedia.org/wiki/ Data_compression (last visited Oct. 26, 2011).
80

 The analysis computer must have an external disk drive of sufficient capacity to make backup

copies of the interim results obtained during analysis. The use of an external backup drive means

that the probability of failure is reduced as it is a separate drive from the primary one, and also

means that results can be moved quickly and easily to a second computer if the first analysis

computer fails. The analysis computers also must be provided with a sufficiently large capacity

uninterruptible power supply (UPS) to permit the computer to keep running for enough time to

perform a controlled shut down in case of a power loss. We have seen hours of analysis wasted

due to a brief ―power hit‖ induced by a thunderstorm, or by a proctor inadvertently spilling coffee

on a power distribution bar. It is a completely false economy not to provide a UPS. There is an

adage in the computer business that having only one backup is not enough: ―You can never be rich

enough, thin enough, have enough RAM, or enough backup copies.‖ Therefore, considering the

cost of the analysis, it would be prudent to purchase a second external backup disk to hold an

additional redundant copy of the interim results of the analysis. The analysis computer also

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

The producing party may feel the need to provide ―neutral‖

hardware, freshly purchased for the litigation, so that these computers can be

destroyed after the litigation, thus ensuring that no trace of the source code

outlives the litigation. This need, however, is technically incomprehensible.

Similar thinking might also induce the producing party to object to

providing dual large screen monitors or a sufficiently fast and robust laser

printer. These objections are typically borne of a lack of appreciation for

the complexity of reviewing complicated source code on computer screens

and the need to have reliable, high speed printing capabilities.

If the true concern of the producing party is to ensure that every last

trace of the source code is removed from the hard disks, those disks can

easily and cheaply be replaced with brand new hard disks at the end of the

litigation. Model clause r, above, requires such destruction.
81

 There is no

technical basis whatsoever for the producing party (or the receiving party,

for that matter) to have to provide brand new, untested, and possibly

underpowered computers for the analysis.

e. Controlling Printing and Copying of Source Code

A clear concern when dealing with source code (or anything else

stored on a digital computer) is the ease with which copies can be made and

propagated. Therefore, it is not unusual to see a clause that attempts to

restrict copying:

No electronic copies of the source code shall be

made (e.g., creating Adobe Acrobat Portable Document

Files, or photographing the source code, or capturing screen

shots of the source code), other than the temporary copies

necessary for analyzing the source code. Whenever

possible, no printed or electronic images or copies of the

source code shall be used in correspondence, pleadings,

expert reports, deposition, and trial exhibits.

In the event that paper copies of source code are

made, no more than five copies shall be made.

requires a high speed, high quality printer. We acknowledge that there appears to be an internal

contradiction insofar as we have previously stated that forensic software analysts abhor printing

out source code. What has to be printed can often be documentation, or interim results, thus

necessitating a printer attached to the analysis computer.
81

 See supra Part IV.B, cl. r.

 Computer Software-Related Litigation

We have also seen clauses that restrict the number of pages of paper printed

copies:

A receiving Party shall be allowed to make up to

500 pages of hard (non-electronic) copies of those portions

of source code that it, in good faith, considers necessary to

the preparation of its case, and may remove the hard (non-

electronic) copies from the premises of the source code

custodians. Notwithstanding the foregoing, a receiving

Party may not make any hard copy of more than 20

consecutive pages of source code absent express permission

of the producing Party or an order from the Court. The

receiving party shall maintain a written log of those portions

of source code that it considers necessary to the preparation

of its case and of those pages it prints.

The presumed intent of these types of clauses is to reduce the risk that

inappropriate copying of the source code occurs and the risk that a copy falls

into unauthorized hands. A further inferred intent is that keeping a log file

will permit oversight of the recipients of printed source code.

On the face of it, this language appears to be well meant, but in

practice, when dealing with source code it is onerous in the extreme. For

example, consider the case of a copyright infringement action. The

plaintiff’s expert performs a forensic software analysis and discovers large

quantities of identical source code and large quantities of substantially

similar source code. The first part of demonstrating that the source code is

identical is easy: plaintiff’s expert can use plaintiff’s source code (which is

not subject to the same restriction as defendant’s source code) and, with

plaintiff’s approval, put that source code into pleadings, expert reports,

depositions, and trial exhibits. The problem comes when dealing with

substantially similar source code. How can such substantial similarity be

communicated fairly without a side-by-side comparison? A list of file

paths, file names, and source code line numbers simply does not

demonstrate the nature and quantity of substantial similarity. No description

of the level and nature of the similarity will bring home the point as well as

a side-by-side comparison where identical fragments are shown, for

example, with red highlighting, and substantially similar fragments are

shown with yellow highlighting. Only then can the viewer obtain a

quantitative and qualitative sense of what is meant by ―substantial

similarity.‖

Restrictions on the number of pages for printed copies are curious

because it is somewhat unusual for a forensic software analyst to print out

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

source code. Printing out source code is a remedy of last resort.
82

 Thus it is

generally true that forensic software analysts, in common with the original

computer programmers who wrote the source code, abhor the notion of

printing out source code except for the purposes of creating exhibits for

expert reports, deposition exhibits, and trial demonstrative exhibits.
83

 It

serves no purpose to print out more source code than is required for exhibits

or for studying extremely complex logic.

Imposing limits on how much source code can be printed via a

protective order appears, again, as a type of ―security theater.‖
84

 Very little

security benefit is gained by this restriction, and the burdens such a

restriction can impose are significant. Whatever amount is chosen as a limit

is likely to be wrong because the amount will be chosen based on theory not

on practice. The amount of source code printed will be determined by how

much source code is relevant to the issues. Any arbitrary limits placed on

the number of pages that can be printed simply miss the point and, by

definition, will likely be wrong. Such limitations appear to offer some

reassurance that wholesale printing will be prevented, but in practice the

limitations only serve to increase the cost, as further negotiation between the

parties’ counsel will be required to increase the limits.

Finally, maintaining a log of the recipients of printed source code is

also part of the security theater—it is unlikely that such a log would actually

identify malfeasance. If there is going to be a leak, the leaker is unlikely to

self-report his or her access to the source code. Additionally, computer

access logs are far better at tracking every incident of access to files on the

computer.

So long as the protective order ensures that only source code

relevant to the dispute is printed out, as model clauses r and t provide, there

need be no limits on the amount of source code that can be printed. The

model clauses further provide for proper handling of those copies
85

 and for

82

 The typical reason for needing to print source code and study it is where the source code is so

complex, tangled, and widely spread across different source code files that the computer display(s)

on the stand-alone computer act like a keyhole and prevent understanding of the larger picture of

the programming logic.
83

 Additionally, all of the benefits of printing out source code on paper, with or without

highlighting, can be obtained without compromising security if the source code is ―printed‖ to an

Adobe PDF file that is then either encrypted as a file or placed on a disk protected by disk-level

encryption. Such a file can then be transmitted or hand carried; it can be filed with the court under

seal; it can be placed in front of a deponent on a computer screen; or it can be displayed in a

courtroom using a display projector—all without having to leave a decrypted version of the file on

a computer system where it would be put at greater risk of falling into the wrong hands.
84

 SECURITY THEATER, supra note 57.
85

 See Part IV.B, cl. r, s, and t.

 Computer Software-Related Litigation

the destruction of the copies produced once the litigation has concluded.
86

Overcoming an attorney’s lack of understanding of what an Adobe Acrobat

PDF file is (although such understanding is now much more widespread),

and the efficacy of strong encryption
87

 are the biggest hurdles in convincing

counsel for the producing party that overly restrictive clauses designed to

limit copies are inappropriate and unnecessary.

f. Printing Source Code on Pre-Bates Numbered Paper

Until relatively recently, the practice of law has placed significant

emphasis on paper-based information. Bates numbered paper has long

facilitated tracking and referencing of documents in a paper-based

environment. Therefore, the following overly protective clause has

appeared in more than one protective order:

The source code may only be printed out on paper

using paper that has been pre-numbered with Bates

numbers. A log file will be created showing the Bates

number ranges of all such printouts with a description of the

contents of the printouts.

We presume that the intent behind using pre-Bates-numbered paper is to

ensure that all source code printouts are easily identifiable as they are

created and easily referenced during the litigation. The presumption is also

that the log file will permit all printouts to be accounted for.

Source code that is printed out just as it exists in the revision control

system is effectively unusable for exhibits as it is cluttered with notations

used by the revision control system and there are no easy-to-use reference

markers by which attention can be drawn to a specific line of source code.

From the computer science point of view, to identify a given line of source

code unambiguously, one needs to identify the directory structure
88

 in which

the source code file is contained plus the line number of the source code line

within the file that contains it. Bates numbers serve to identify a given page

in the record, but are irreversible—given a Bates number, one cannot

backtrack to the actual source code file and the specific line of source code.

86

 See Part IV.B, cl. s.8 and t.2.
87

 See discussion supra Part III.C.1. As described previously, no strong encryption is effective if

the encryption keys are not managed properly. Key management, however, is less burdensome

that managing physical printouts of source code and log files.
88

 Source code files are typically stored in a hierarchical directory structure such as

/productName/version/functionalArea/sourceCodeFileName. The source code file name is an

ambiguous identifier as it is not unusual for more than one file to have the same name, albeit in

different functional areas.

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

Thus, Bates numbers do not provide the same assistance in locating

particular material referenced in a subsequent report, pleading, or other

document. Numbering blank paper is a remnant of ―paper thinking‖ and

leads to increased costs and unnecessary suspicions about the numbers when

the almost inevitable paper jams occur.
89

The minimal cost solution is to ―print‖ all the source code to Adobe

Acrobat PDF files and then number the electronic pages with Bates numbers

before any physical printouts occur. Adobe itself provides specific

instructions how to add Bates numbers to Adobe Acrobat PDF files.
90

This solution allows electronic ―pages‖ in the PDF files to bear

unique Bates numbers that correspond exactly with the printed versions of

those pages. As the numbering is electronic it can be done at high speed and

without any need for preprinting, thus avoiding the multi-sheet feeding and

paper jams that otherwise tend to occur. The typical objection will come

from attorneys unfamiliar with PDF files and the advantages that they offer

over physical paper.

g. Forensic Software Analyst May Not Study Printed Source

Code

The desire to minimize printed source code manifests in several

forms. This is one of the more unusual clauses we have seen:

The forensic software analyst may print portions of

the source code only when reasonably necessary to prepare

pleadings, expert reports, deposition, or trial exhibits. The

forensic software analyst shall not print source code as an

alternative to analyzing that source code on the stand-alone

computer.

89

 Significantly, using pre-Bates-numbered paper is a logistical nightmare for several reasons.

First, when paper is passed through a laser printer to pre-print the numbering on it, the fusing

rollers that heat the toner to fuse it into the paper, dry out the paper. This dryness then appears to

increase the risk that, when printing the source code on this pre-printed paper, the printer will feed

more than one sheet at a time, or cause a paper jam. Either of these events then causes

discontiguity in the page numbering that raises suspicion that pages have been redacted for sinister

reasons. Additionally, if not enough paper has been pre-Bates-numbered, the forensic software

analysis must stop while more paper is pre-printed. This, of course, tends to happen when time is

short and the delay is most inconvenient.
90

 ADOBE HELP RESOURCE CENTER,

http://help.adobe.com/en_US/Acrobat/8.0/Professional/help.html? content=WS6DE1E376-6A82-

406c-A711-6C5E5207A1F2.html (last visited July 19, 2011).

 Computer Software-Related Litigation

The presumed intent is to limit the amount of source code printed out on

paper by only allowing that printed source code to be read in detail by

people other than the forensic software analyst, even though that analyst is

likely to base their testimony on what is on the paper. It is difficult to

conceive of a legitimate concern that such a provision is attempting to

address.

This clause displays a lack of understanding of the forensic software

analysis process. Under normal conditions, an analyst does not require and

will avoid printing out source code because it is so unmanageable. Printed

source code is a remedy of last resort especially when it comes to source

code that is extremely complex or tangled—and when that resort is needed,

printing the source code is the only way to proceed.

The typical reasons for needing to print source code and study it

will be where the source code is so complex, tangled, and widely spread

across different source code files that the computer display(s) on the stand-

along computer act like a keyhole and prevent understanding of the larger

picture of the programming logic. If this clause is allowed to remain in the

protective order, and the source code is complex, it will only serve to

increase the time and cost of the forensic software analysis.

This restriction should not appear in properly drafted protective

orders of appropriate scope. The appropriate protections for printed copies

address the legitimate concerns.

h. Forensic Software Analyst May Only Take Handwritten

Notes

One of the more restrictive clauses we have seen in protective

orders is:

The forensic software analyst may take notes

relating to the source code but may not copy the source

code into the notes and may not take such notes

electronically on a computer.

The presumed intent is to reduce the probability that source code will be

copied during the forensic software analysis.

This clause creates major inconveniences for the forensic software

analyst, and is much like asking a landscaper to cut the lawn with nail

scissors—it can certainly be done, but it drives the cost up by orders of

magnitude. First, any computer-assisted analysis is going to create

intermediary results files, and these files, depending on the number of lines

of source code, could be huge. Second, making hand-written notes about

source code is completely impractical. Source code contains long textual

strings that must be written with absolute accuracy to withstand any expert

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

cross-examination. Third, source code can be incredibly difficult to deal

with by writing handwritten notes. Consider this from a Microsoft example

program:
 91

12 unsigned wHash=0;

13 pch=sz;

14 while (*pch!=0

15 wHash=(wHash<>11+*pch++;

16 cch=pch-sz;

17

pbsy=&rgbsyHash[(wHash&077777)%cwHash];

18 for (; *pbsy!=0; pbsy = &psy->bsyNext)

19 {

20 char *szSy;

21 szSy= (psy=(struct SY*)&rgwDic[*pbsy])-

>sz;

22 pch=sz;

23 while (*pch==*szSy++)

24 {

25 if (*pch++==0)

26 return (psy);

27 }

28 }

Unlike the example above, source code can also use some very long

strings of characters, each of which must be transcribed absolutely

accurately if they are to form the basis for an exhibit:
 92

static void writeTree(XmlNode xmlElement, int

level) {

 String levelDepth = "";

 for(int i=0;i<level;i++)

 {

 levelDepth += " ";

 }

Console.Write("\n{0}<{1}",levelDepth,xmlElement.Name)

;

91

 See Charles Simonyi, Hungarian Notation, MSDN (reprinted Nov. 1999),

http://msdn.microsoft.com/en-us/library/aa260976(v=vs.60).aspx (describing variable naming

conventions).
92

 Matt Fincher, Learning C, MATT FINCHER’S HOME PAGE

http://www.fincher.org/tips/Languages/csharp.shtml (last updated Jun. 14, 2012).

 Computer Software-Related Litigation

 XmlAttributeCollection xmlAttributeCollection =

xmlElement.Attributes;

 foreach(XmlAttribute x in xmlAttributeCollection)

 {

 Console.Write(" {0}='{1}'",x.Name,x.Value);

 }

 Console.Write(">");

 XmlNodeList xmlNodeList =

xmlElement.ChildNodes;

 ++level;

 foreach(XmlNode x in xmlNodeList)

 {

 if(x.NodeType == XmlNodeType.Element)

 {

 writeTree((XmlNode)x, level);

 }

 else if(x.NodeType == XmlNodeType.Text)

 {

 Console.Write("\n{0}

{1}",levelDepth,(x.Value).Trim());

 }

 }

Console.Write("\n{0}</{1}>",levelDepth,xmlElement.Nam

e);

}

A clause permitting only handwritten notes is burdensome in the

extreme. Modern computer source code was never intended to be

handwritten even by the original programmer—so much so that a

programmer will, in all probability, use Microsoft development programs

that automatically complete many of the long strings of characters that occur

in source code as they are too long to type accurately.
93

The only rational minimum cost solution is to eliminate these

inappropriate clauses. Given a reputable forensic software analyst whose

reputation and future livelihood rests entirely on demonstrating his or her

ability to handle proprietary source code responsibly and in compliance with

a protective order, the risks of inappropriate copying are minimal and do not

justify such a burdensome provision in a protective order.

93

 The autocompletion feature is called IntelliSense. For an overview see Intellisense, WIKPEDIA,

http://en.wikipedia.org/wiki/IntelliSense, (last visited July 21, 2011). See also, Autocomple,

WIKIPEDIA, http://en.wikipedia.org/wiki/Autocopletion, (last visited Oct. 26, 2011).

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

i. Source Code Access Logs

Given the importance of the source code on the stand-alone

computer we often see an overly protective order clause of the form:

A written log shall be created identifying those

individuals who access the source code on the stand-alone

computer. This log shall record the name of the individual,

and the date and time of the access to the source code.

The presumed intent of such an access log is to police who accesses the

source code on the stand-alone computer, thereby ensuring that there will be

no unauthorized access to the computer.

The unintended consequences of such an access log are the

overhead of creating and maintaining such a log. While the overhead is not

great, there does not appear to be any significant benefit in creating a paper-

based log when the computer operating systems can do this far more

efficiently, accurately, and automatically. The inefficiency of the paper log

is especially apparent when one considers that any signs of malfeasance are

unlikely to be placed into a manually kept log.

By assigning each individual authorized to access the stand-alone

computer a unique user account, the automated logging function records

which user accesses which files along with the date and time of the access.

Model clause n, above, requires the use of this logging capability.
94

 The

usual objection to abandoning manual logging, and instead relying upon the

automated logging, is based on fear of the unknown—many computer

scientists are unaware that the operating systems can actually provide this

level of auditing/logging as these features are rarely used.

j. Proctors

We have seen an increasing number of situations where counsel for

the parties have stipulated to the presence of a proctor to supervise the

source code analysis. The duties of the proctor have ranged from being

responsible for powering on and off the computers, entering the access

passwords, or even visual supervision of the actual analytical process. In

this latter case the protective order language was of the form:

The producing party shall designate a proctor to

visually monitor the activities of the receiving party's

representatives during any source code analysis but only for

94

 See supra Part IV.B.

 Computer Software-Related Litigation

the purpose of ensuring that no unauthorized copying of the

source code occurs and no information about the source

code is being created or transmitted.

The presumed intent of a proctor is to ensure that the forensic software

analyst will not make unauthorized copies of the source code and remove

them from the room containing the stand-alone computer. However, the

concept of the proctor operating as a supervisor of the source code analysis

process seems to be excessively paranoid, especially given that, in our

experience, the people chosen to be proctors rarely are skilled computer

scientists
95

 and almost never maintain their vigil inside the same room as the

stand-alone computer.

Expressed in its most brutal form, the proctors we have seen have

not had the technical know-how, nor have they been in the right place,
96

 to

detect any copying of anything. When it comes down to it, the proctors we

have encountered have placed their trust in the idea that that the forensic

software analysts have agreed to the terms and conditions, and therefore do

not attempt to copy the source code. We lament the fact that the proctors

place their trust in the forensic software analysts, but the counsel for whom

the proctors work do not.

When one considers that forensic software analysts base their

reputations and their future careers on their integrity, one must ask whether

there is any rational basis for such proctoring. A clause in a protective order

requiring a proctor seems more a case of attempting to deal with ―imaginary

horribles‖ that exist only in the minds of counsel rather than in the real

world. With ―imaginary horribles‖ it is hard to overcome irrational fear

with reason. As a practical matter, ineffectual proctors simply serve to slow

the analysis process down and to increase the costs, with no perceptible

benefit to either of the litigants. Nevertheless, counsel will argue for having

a proctor in the irrational belief that such a proctor will act as the last bastion

to protect their client’s source code. In our real-world experience, reality

rarely comports with this notion.

95

 In our experience it is not unusual that they be employees of a temporary agency and be paid

minimum wage.
96

 The proctor usually is more of a gatekeeper—well, a doorkeeper—who sits outside the room that

contains the stand-alone computer. There is usually only one proctor and he or she takes

bathroom, lunch, and phone-call breaks without requiring that the source code analysis cease.

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

k. Forensic Tools

A recent trend in overly protective orders has been the appearance

of language restricting the tools an analyst may employ in conducting the

analysis. Here we identify by letter and number individual clauses for

subsequent discussion:

1.a) The parties shall agree in advance on the

software tools to be installed on the stand-alone computer

for analyzing the source code.

1.b) If, at a later date, additional software tools need

to be installed, the receiving party shall make a request to

the producing party for such tools.

1.c) The producing party may object within three

days of that request and if such an objection is raised the

receiving party shall not install the additional software tools

on the stand-alone computer.

An alternate form reads:

2.a) The producing party shall install software tools

on the stand-alone computer that are sufficient for viewing

and searching the source code, if such tools exist and are

presently used in the ordinary course of the producing

party's business.

2.b) The receiving party's outside counsel and/or

experts may request that commercially available software

tools for viewing and searching the source code be installed

on the secured computer, provided, however, that such other

software tools are reasonably necessary for the receiving

party to perform its review of the source code.

2.c) Where executable source code [sic] is installed

on the stand-alone computer, the receiving party shall be

entitled to install and use appropriate compilers, debuggers

and text editors so long as the receiving party agrees that no

edits may be performed on the source code.

2.d) The receiving party must provide the producing

party with the licensed software tools at least ten days in

advance of the date upon which the receiving party wishes

to have the additional software tools available for use on the

stand-alone computer.

The presumed intent of these clauses is to afford the producing party control

over what software tools are used to analyze the source code on the stand-

alone computer. There seems to be no valid technical or legal reason why

 Computer Software-Related Litigation

the producing party should have such control over the means by which the

source code is analyzed.

The source code exhibits in the expert report will speak for

themselves regardless of what tools were used to prepare the report. The

tools are therefore not the objects of scrutiny. In conducting expert analysis

of computer source code it is the results, and only the results, that matter:

does the exhibit demonstrate support for the assertion made by the forensic

software analyst or not?

Controlling the means by which relevant evidence is located should

be outside the purview of the producing party. It is both irrelevant and

inappropriate that the producing party should have any say in how the

forensic expert’s investigation and analysis is completed. The producing

party will have a full opportunity to dissect and rebut the results of that

analysis. Additionally, if it is relevant in a particular case, through

deposition or at trial the producing party may inquire about the methods

employed to arrive at the results. However, controlling the methodology ex

ante is inappropriate.

Contrary to what clause 1.a above suggests, it is usually impossible

to predict the specific software tools that a forensic software analysis will

require until the forensic software analyst has examined the produced source

code in some detail. If a clause like 1.a is in place, the receiving party will

be deliberately over-inclusive in the list of desired software tools rather than

be penalized with delays imposed at the whim of the producing party. Such

over-inclusiveness might provoke the producing party to protest and

inappropriately shift the debate to the issue of the number of the tools, rather

than what the debate should focus on: the probative findings of the tools.

The alternate form of clause 1.a, clause 2.a, is predicated on the fact

that all of the software tools to be installed on the stand-alone computer are

presently in use in the ―ordinary course of the producing party’s business.‖

This is clearly a specious presumption that has little hope of being true even

if the producing party happens to be in the forensic software analysis

business. Such a clause is so off the mark that, to quote Wolfgang Pauli,

―it’s not even wrong.‖
97

Clause 2.b is predicated on the notion that all likely forensic

software analysis tools are commercially available rather than (a) being

publicly available free software, or (b) being proprietary tools developed by

the forensic software analyst. Again, this clause fails to rise to the level of

97

 Michael Schermer, Wronger Than Wrong: Not All Wrong Theories are Equal, SCIENTIFIC

AMERICAN (Oct. 16, 2006), http://www.scientificamerican.com/article.cfm?id=wronger-than-

wrong.

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

even being wrong. Certain software tools are perfectly viable forensic

software analysis tools but are no longer commercially available.
98

Additionally, forensic software analysts routinely create additional software

tools either ad hoc or as augmentations or tailoring of standard third party

software tools.
99

 This augmentation or tailoring can represent the stock-in-

trade of the forensic software analyst and are therefore proprietary products

in their own right.

Paragraph 2.c is a further curiosity because of the internal

contradiction of ―executable source code.‖ A computer cannot execute

source code. That aside, it is curious that the presence of this mythical

executable source code is the predicate condition for being able to use

software to compile (translate source code into executable object code) and

then debug that object code.

Paragraph 2.d exemplifies a producing party wishing to overreach

by having ten working days to consider whether a particular software

analysis tool can be installed. As previously stated, it is inappropriate to

confuse the software tool with the results that it produces. Furthermore,

providing the producing party with the power to delay the analysis by ten

days for each product grants the producing party powers which are

inconsistent with the spirit, if not the letter, of the Federal Rules of Civil

Procedure governing discovery.
100

A further presumed unintended consequence of these clauses is that

the cost of licensing the necessary software tools must be borne (usually) by

the receiving party. The typical software tools required for source code

analysis can easily total several thousands of dollars per computer. This is

needlessly expensive if the forensic software analyst already has licenses for

the required software tools.

The only rational minimum-cost solution is to eliminate these

inappropriate clauses and focus on the results, not the means by which they

were obtained. The forensic software analyst should be free to install

whatever tools are required to complete the analysis cost-effectively. The

expert witness will be exposed to the rigors of cross-examination at

deposition and at trial to determine whether the resulting exhibits, and the

expert opinions based upon them, are valid.

98

 The Thompson Toolkit is one example of viable software no longer available. See, e.g.,

THOMPSON AUTOMATION SOFTWARE, http://www.tasoft.com/ (last visited July 16, 2011).
99

 See supra Part II.B.2.
100

 See supra note 5.

 Computer Software-Related Litigation

As we are at a loss to understand the presumed intent of the

producing party to control the forensic software analysis tools, it is hard to

speculate as to what objections the producing party might have to

abandoning such control. The primary objection to denying the producing

party this degree of scrutiny over the analysis tools may be that the

producing party will not know how the results were obtained. While this is

true, what matters more is whether or not the exhibits produced as a result of

the analysis meet the burden of providing a basis for the expert opinions

regarding infringement or misappropriation. Source code analysis is not

subject to the same issues of reproducibility as, say, chemical

experimentation or physical experiments
101

—it is purely textual: either the

source code cited in the expert’s report exists in the code and provides

adequate basis or it does not. Moreover, knowing how such infringement or

misappropriation was detected might provide an opportunity for an

unscrupulous party to hide their unlawful behavior in the future.

l. Prohibition on Compiling the Source Code

We have seen the following paragraph in a protective order:

The source code will be produced for inspection in

native format or in an electronically-searchable form,

together with all necessary libraries and make files

necessary to compile the source code, but the receiving

party shall not compile the source code or any portion

thereof.

The presumed intent is to ensure that all of the source code files and

libraries of previous compiled source code are provided, hence the notion

that all necessary libraries and header files will be produced. However, the

prohibition on actually compiling the source code is mystifying.

This prohibition results in the receiving party having no practical,

cost-effective way of determining whether all of the source code for a

product has been produced.
102

 It bears repeating that there is no cost-

101

 In one case, the producing party suggested as an alternative that its representative be allowed to

watch the forensic software analyst repeat the use of the software tools to see if it produced the

same results twice. This suggestion is as bizarre as it is futile for it does not test the accuracy of

the source code exhibits, but merely the reproducibility of the software tool’s results.
102

 A program such as Understand can be of some use to determining missing source code files, but

only the act of actually trying to convert the source code into an executable program is truly

dispositive. Understand works strictly with source code files. It cannot and does not check to see

if any third party components, linked together with the output of the compiled source code, are

present or not. UNDERSTAND, supra note 25.

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

effective alternative to compiling the source code to determine the

completion of a source code production.
103

 Additionally, beyond assessing

the completeness of production, for all causes of action there are reasons

why compilation and execution of the resulting program is a valid task for

the expert to perform—all of them relating to the dynamics of the behavior

of the program as it executes, rather than to the static expression in the

source code. In cases involving assertions of copyright infringement, the

displays created on the computer screen—the audio/visual displays, the

printouts, or the on-line help—may be probative of the issue of

inappropriate copying. In cases involving allegations of patent infringement

or trade secret misappropriation, the claimed invention or asserted trade

secret may be, or may include, the behavior of the resulting executable

program rather than the static aspects of the source code.

Furthermore, there is a curious alternative provided by this

language: source code in ―native format or in an electronically searchable

form.‖ These alternatives, without showing their hand, cover everything

from the actual format in which the source code is created and maintained to

printing out the source code, scanning in these printouts, and then

converting the printouts to text using optical character recognition.
104

 These

PDF files can be searched, but not with the same facility and with nowhere

near the accuracy as the original source code. Again, one wonders why a

producing party would go to so much trouble to ―produce‖ this form of the

original source code unless it is to hide incriminating evidence or to

significantly increase the discovery costs of the receiving party.

The only rational minimum-cost solution is to eliminate these

inappropriate clauses.

2. Stand-Alone Computers Not at the Analyst’s Location: Key

Issues Usually Omitted from the Protective Order

We have seen some incredibly burdensome situations develop

because insufficient attention was paid to the stand-alone computer and/or

the logistics of using it at a remote site. As described in detail above,
105

103

 See supra Part II.B.1.
104

 This latter method of creating ―electronically searchable files‖—one we have seen quite often

even though it is fraught with the errors that optical character recognition produces—is made all

the worse by the fact that source code is completely unlike normal written English and the optical

character recognition software thus completely botches the conversion to text. However, such

garbled text falls within the definition of ―electronically searchable,‖ even though the text is little

more than an artist’s impression of the original source code.
105

 See supra Part IV.C.1.

 Computer Software-Related Litigation

requiring that the computer be located anywhere other than the analyst’s

office significantly increases the cost of discovery with little gained in

return. It thus suggests the need for additional language in the protective

order to reduce the burden and expense of using a remote location if a

remote stand-alone computer must be used.

a. Administrative or User Accounts

We have often seen the producing party use the strategy of creating

a user account for the forensic software analyst that merely has the access

privileges of an ordinary user. The producing party argues that the forensic

software analyst has no need for administrative privileges. Unfortunately,

this argument is based on ignorance of the fact that many of the software

tools used for forensic software analysis can only be run if the account being

used has administrative privileges. Thus, such a restriction stops the

analysis dead in its tracks. Lack of administrator privileges causes delays as

counsel for the producing party must understand the issue and then realize

that their positing is technically invalid and untenable. We therefore

recommend the inclusion of this clause in any protective order requiring a

remote site computer:

On the stand-alone computer the forensic software

analyst will have a user account with administrator

privileges to permit the analysis to proceed unimpeded.

b. Operating System

The operating system installed on the stand-alone computer must be

fit for the task it will be called upon to perform. We have seen hastily

purchased stand-alone computers with Microsoft XP Home installed on

them. Such ―toy‖ versions of this operating system have no place in the

context of forensic software analysis. As it takes several days to install and

test the operating system and the required forensic tools, the operating

system must be identified in detail in the protective order, otherwise the

moment the forensic software analysis starts, the operating system goes into

meltdown under the load. The actual choice of operating system will be one

that can only be determined by the forensic software analyst, but a typical

protective order clause might be:

The operating system installed on the stand-alone

computer shall be Microsoft Windows XP 64-bit with all

current upgrades installed and tested.

c. Proprietary Third Party Software

Proprietary third party software will be required to perform the

analysis and, depending on the restrictions imposed on the analysis, to

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

record the results, prepare exhibits, and create Adobe Acrobat PDF files in

lieu of physical printouts.
106

A brief list of the software likely to be required might be:

a) Revision control software (to access the source code).

b) File compression/decompression (to expand out compressed

source code archives).

c) File decryption software for those files produced in

encrypted form (along with appropriate decryption

passwords).

d) Specialized tool systems, e.g. Cygwin, UNIX command-line

tools, and scripting for Microsoft Windows. These will be

used to run prepared analytic processes (called scripts).

e) Specialized scripts to effect the analysis.

f) Microsoft Office (usually Microsoft Word and Excel are all

that are required).
107

g) Adobe Acrobat Pro (to create PDF files and Bates number

them).

h) Understand – a source code navigation tool.

i) Beyond Compare – a text file comparison tool.

j) Adobe Photoshop (if any images need to be examined).

Most of the software tools identified above are subject to paid

license agreements and therefore the parties need to consider (a) who will

purchase the licenses, (b) in whose name the software will be registered, and

(c) at the end of the discovery period, who will de-active the licenses and

make them available for use on other computers.

The software identified above (or alternatives for Apple or Linux

operating systems) take a significant amount of time to install and test.

Such installation and testing should not be taken lightly; we have seen

weeks wasted because the stand-alone computers were inoperable or

unreliable because of mistakes made during the software installation.

106

 See discussion supra Part IV.C.1.e.
107

 There are some additional add-in tools for Excel that are useful for forensic analysis, such as

Ablebits. ABLEBITS, www.ablebits.com (last visited July 21, 2011).

 Computer Software-Related Litigation

We would recommend that the following language be used as a

model:

The producing party shall provide the stand-alone

computer(s) and shall install the following list of computer

software on the computer(s): <Insert list of software>.

The licensing fees for the software shall be paid by

<producing/receiving> party, and, on conclusion of this

litigation, the software shall be deactivated and the licensing

information and original media and documentation shall be

made available to <producing/receiving> party so that the

software can be redeployed on other computers.

Following the initial installation of the software

identified above, the stand-alone computers shall be tested

running third party stress tests to ensure that the computer

hardware and operating system are correctly installed (this

test shall be run for 24 hours continuously), and each

individual software package shall be tested to ensure that it

has been installed correctly, registered correctly, and

operates correctly.

Once testing has confirmed that the stand-alone

computer hardware and software is operating correctly, a

hard disk backup image will be created to avoid the need to

re-install the operating system and application software in

the event of a catastrophic hardware or software failure.

There is an absolute need to create a backup copy of the stand-alone

computer once the operating system and applications have been installed.

When the stand-alone computer fails, this backup copy can be used to

configure replacement hardware in a matter of minutes rather than days.

d. Technical Support

Even with the best of intentions, and with high-quality hardware and

software, the stand-alone computer is likely to exhibit problems at some

point during the analysis. Unlike most typical day-to-day use, forensic

analysis puts an extreme load on a computer, increasing the probability of

hardware and/or software problems.

Given that the stand-alone computer is not at the forensic software

analyst’s office, it is imperative that there be a well-defined plan to repair

the computer hardware or deal with software related issues. On more than

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

one occasion we have seen the stand-alone computer simply stop working

and need to be replaced, causing delays of a week or more.
108

Thus the protective order should describe a procedure for providing

technical support:

In anticipation of hardware or software issues with

the stand-alone computer, producing party will provide

continuous technical support to the forensic software

analyst during the analysis.

In the event of any failures with the stand-alone

computer or associated hardware, the forensic software

analyst will call <name of person> at the following

numbers: <office number, home number, cell phone

number, email/texting address>. If <name of person> is not

available, then the backup person shall be: <name of person,

office number, home number, email/texting address>. The

producing party shall use all reasonable effort to remediate

the problem within 24 hours. If this is not possible, rather

than delay the forensic software analysis, the computer

hardware and software will be replaced.

e. Physical Environment for Stand-Alone Computer

All too often we have found that the stand-alone computer is placed

in an office where the heating or cooling systems have been turned off

during the hours of the forensic software analysis, e.g., during evenings and

weekends. We have endured temperatures as high as 105°F and as low as

40°F, neither of which are appropriate for the kind of detailed analytical

work at hand. Therefore, we would recommend the following clause in the

protective order:

During the period when the forensic software

analyst is performing the analysis the heating, ventilation,

and air conditioning system will be kept running to ensure

comfortable working conditions.

108

 In one case the delay was exacerbated by the fact that the protective order had failed to require

the creation of a working backup of the stand-alone computer once the operating system and

application software had been installed and tested.

 Computer Software-Related Litigation

3. Stand-Alone Computers Located At Forensic Software

Analyst’s Office

a. Network and Internet Connections

Prohibiting the stand-alone computer from being connected to the

internet or existing internal networks is an appropriate solution to guard

against unauthorized access via the ―back door‖ of the Internet or an Intranet

in the same office. However, protective orders that ban network connection

completely can present problems for appropriate forensic analysis of the

software. For example, a typical clause might provide:

Stand-alone computer shall not be connected to a

network of any kind (e.g. local area network, intranet or the

Internet.)

The presumed intent of this language is to ensure that the stand-alone

computer is truly isolated from other computers from which it could be

attacked and from which unauthorized access to the source code might

occur.

However, in some circumstances a limited network may be

appropriate. For example, if the amount of source code is sufficiently large,

more than one computer may be required to perform the necessary forensic

software analysis. If this is the case, it will be far more cost-effective to

create a diminutive local area network that links together these analysis

computers and one or more printers. Provided that this network is created

out of physical cables between the computers and printers rather than using

wireless technology, there is no increase in the risk of unauthorized access.

However, by insisting that no local area network can be created, the results

from the analyses cannot be combined on a single computer, nor can a

single printer be shared between the computers. The lack of such a local

area network between the analysis computers serves to slow down the

analysis and increase the time and cost required with absolutely no gain in

security.

Model clause q, above, provides for the appropriate security

protection while at the same time permitting the analyst’s work to proceed

in a cost-effective manner.
109

 The producing party typically objects because

of the misplaced perception that any kind of network increases the risk of

inappropriate access to the source code. Provided that the network is

confined to the same room as the analysis computers and is created using

109

 See supra Part IV.B, cl. q.

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

data cables and not wireless connections, this perception does not comport

with reality.

b. Stand-Alone Computer Located at Expert’s Facilities:

Prohibitions on Printing

As discussed above,
110

 concern with wholesale printing of

proprietary source code is valid and it is proper that printouts of source code

should be considered in a well-drafted protective order, but we have seen

such restrictions as:

Stand-alone computer shall not be connected to a

printer. Expert shall identify those parts of files that are to

be printed.

The presumed intent of such a clause is similar to prohibitions on printing

copies found in orders where the computer is not located at the forensic

analyst’s office: the producing party can both monitor and control what

source is printed. Implicitly that control would permit the producing party

to limit the amount of material that is printed. Presumably the fear is that

the more printed copies that exist, the greater the security risk that a copy

might fall into the wrong hands.

Printing by request only significantly increases the workload of the

forensic software analyst. The analyst must first request that printouts be

made. When the printouts arrive, the analyst must verify that everything

that was requested indeed has been printed.
111

 Next, depending on the

amount of source code that needs to be analyzed, this prohibition on printing

can add significant time and cost to the analysis. The amount of source code

to be printed will be higher because the forensic software analyst will tend

to be over-inclusive rather than run the risk of having to request additional

portions be printed, and then wait for the additional print-outs to arrive,
112

 if

the analysis of the printed source code reveals the need for additional source

code.

The minimum-cost solution is to have the forensic software analyst

―print‖ source code to PDF files that are stored on an encrypted external

hard disk. These PDF files can then be physically printed out as required. If

the PDF files are preserved and copied to another external encrypted hard

110

 See supra Part IV.C.1.e.
111

 We have seen situations where entire files have not been printed, or printer jams have caused

one or more pages of source code be omitted from printouts.
112

 We have seen a delay of a week or more between the request for source code and the arrival of

the printouts.

 Computer Software-Related Litigation

disk that can be sent to the producing party on a regular basis, then the

producing party can monitor which files are being printed without the

unintended consequences of slowing down the analysis and increasing the

costs. Model clauses s and t, above, address the need for printing and

establish this method for monitoring the printing activities of the software

analyst.
113

The typical objection to this strategy is a loss of control over what is

printed and the volume of such printing. However, the producing party can

still monitor the quantity of files printed without delaying the analysis and

increasing the time and cost of that analysis.
114

 The legitimate concern for

security is addressed by the model clauses that require all printouts to be

treated extremely carefully by securely locking them away when not in use,

and destroying them at the termination of the litigation.
115

4. Transmission of Source Code and Expert Work Product

As discussed above, it is appropriate to be concerned with the

security of the source code and documents containing source code.

Transmission of the source code may occur not only upon initial production,

but also there may be portions of source code in the expert’s reports or other

pleadings. Thus it is not unusual to see a clause like this:

Anyone receiving source code or documents

containing source code will transport these documents

either by hand, FedEx, or other similarly reliable courier.

The source code and documents will not be transmitted by

email, FAX, or other electronic means.

The presumed intent is to protect the source code from unauthorized

disclosure post-production by preventing it from falling into the wrong

hands while it is being shipped or transported. The unintended consequence

is that there will be delays caused by shipping printed materials or computer

113

 See supra Part IV.B, cl. s and t.
114

 If there is a compelling need for the producing party to have near-real-time visibility of what is

being printed, encrypted copies of the PDF files can be transmitted electronically to the producing

party at the end of each day—recall that it is the encryption that provides security, not physical

access. If the concern is that email is an unsafe means for transmitting encrypted source code, then

a cloud-based, encrypted file sharing system such as SpiderOak may provide a viable alternative.

With SpiderOak the encrypted PDF files are encrypted again both for transmission to and from

SpiderOak’s servers and remain encrypted while stored on those servers. See SPIDEROAK,

https://spideroak.com/ (last visited July 17, 2011). SpiderOak is presently the only cloud-storage

system to use encryption in this way.
115

 See supra Part IV.B, cl. q, r, and s.

 FEDERAL COURTS LAW REVIEW [Vol. 6, 2012]

media physically rather than electronically. We have seen weather related

delays of several days during the summer and winter with both FedEx and

UPS. Accidents or simple mistakes, such as failing to specify Saturday

delivery or misaddressing, can also delay packages.

Furthermore, this clause fails to consider that there may be people at

the producing or receiving party’s expert’s office who are less scrupulous

than either party’s counsel, who will copy the source code, which is in plain

text on paper, before it goes into a FedEx envelope or after it has emerged

from it.

Using strong encryption, electronic transfer of documents that

contain portions of source code carries less risk of misappropriation than

physical transport. The source code is unusable from the moment the sender

encrypts it until the recipient decrypts it, regardless of any nefarious hands

through which it might pass.
116

 At the same time that the risk is reduced, the

delay is also eliminated. Instead of taking two or three days to move atoms

around the country, the task can be accomplished in two or three minutes by

moving electrons. Electronic mail, while subject to some delays, is not the

only option. Cloud-based files transfers using Dropbox
117

 or SpiderOak
118

are faster and more secure
119

 alternatives than electronic mail and allow for

file transfers of up to 100GB and more than 100GB (in 100GB increments)

respectively.

The most usual objection that encryption is not sufficiently secure is

usually stated as sophistry: ―There is no such thing as absolutely secure

encryption.‖ However, such thinking must be taken in context. The

problems is that the physical documents themselves contain source code in

clear text, easily readable by anyone who happens to see them, and at the

sending and receiving end they can be mishandled, perhaps even sent (albeit

reliably) to the wrong recipient.

In sum, given proper encryption key management,
120

 encryption

provides better sender-to-recipient security than shipping source code in

plain text, even when using a reliable shipping means.

116

 See supra Part III.C.1.
117

 DROPBOX, http://www.dropbox.com (last visited July 17, 2011).
118

 SPIDEROAK, supra note 114.
119

 The additional security comes, in SpiderOak’s case, from an additional layer of encryption as

files are uploaded from the sender, stored on SpiderOak’s server, and then downloaded from the

server to the recipient. Additionally, SpiderOak uses a more secure and rigorous authentication

scheme before permitting access to user data on the server. Id.
120

 See supra note 53 and accompanying text.

 Computer Software-Related Litigation

V. CONCLUSION

When the complicated world of computer software intersects with

complex intellectual property litigation, having appropriately scoped

discovery and protective orders will assist in minimizing the costs

associated with discovery. We have seen a clear relationship between the

number of restrictions placed on forensic software analysts and the cost of

the resulting analysis. These restrictions appear to have become

―fashionable‖ only relatively recently, seemingly related to counsels’

increased, but still partial, understanding of the analytical process needed in

computer software cases. We assume that the motivation for these

restrictions is well meant, however, several of them leave us puzzled.

Adhering to the wisdom of not attributing to malice that which can be

explained by a lack of competence, we have sought to increase the reader’s

competence concerning the true effect of overly restrictive protective orders.

Attorneys should pay careful attention to the provisions addressing

the requirements of production and analysis of computer software.

Additionally, attorneys must understand the consequences of the clauses

contained in protective orders in these types of litigation. As described in

this article, it is possible to provide robust protection for disclosed source

code while at the same time not unnecessarily increasing the cost of

discovery by weaponizing the protective order.

